1,779 research outputs found
Recent developments in CID imaging
Readout of CID imaging arrays was first performed by injecting and detecting the signal charge from each sensing site in sequence. A new readout method, termed parallel injection, has been developed in which the functions of signal charge detection and injection have been separated. The level of signal charge at each sensing site is detected during a line scan, and during the line retrace interval, all charge in the selected line is injected. The parallel injection technique is well adapted to TV scan formats in that the signal is read out at high speed, line by line. A 244 line by 248 element TV compatible imager, employing this technique and including an on chip preamplifier, has been constructed and operation demonstrated
Cross-waves induced by the vertical oscillation of a fully immersed vertical plate
Capillary waves excited by the vertical oscillations of a thin elongated
plate below an air-water interface are analyzed using time-resolved
measurements of the surface topography. A parametric instability is observed
above a well defined acceleration threshold, resulting in a so-called
cross-wave, a staggered wave pattern localized near the wavemaker and
oscillating at half the forcing frequency. This cross-wave, which is stationary
along the wavemaker but propagative away from it, is described as the
superposition of two almost anti-parallel propagating parametric waves making a
small angle of the order of with the wavemaker edge. This
contrasts with the classical Faraday parametric waves, which are exactly
stationnary because of the homogeneity of the forcing. Our observations suggest
that the selection of the cross-wave angle results from a resonant mechanism
between the two parametric waves and a characteristic length of the surface
deformation above the wavemaker.Comment: to appear in Physics of Fluid
Magnetoresistance of disordered graphene: from low to high temperatures
We present the magnetoresistance (MR) of highly doped monolayer graphene
layers grown by chemical vapor deposition on 6H-SiC. The magnetotransport
studies are performed on a large temperature range, from = 1.7 K up to room
temperature. The MR exhibits a maximum in the temperature range K.
The maximum is observed at intermediate magnetic fields ( T), in between
the weak localization and the Shubnikov-de Haas regimes. It results from the
competition of two mechanisms. First, the low field magnetoresistance increases
continuously with and has a purely classical origin. This positive MR is
induced by thermal averaging and finds its physical origin in the energy
dependence of the mobility around the Fermi energy. Second, the high field
negative MR originates from the electron-electron interaction (EEI). The
transition from the diffusive to the ballistic regime is observed. The
amplitude of the EEI correction points towards the coexistence of both long and
short range disorder in these samples
Quantum Hall resistance standards from graphene grown by chemical vapor deposition on silicon carbide
Replacing GaAs by graphene to realize more practical quantum Hall resistance
standards (QHRS), accurate to within in relative value, but operating
at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date,
the required accuracy has been reported, only few times, in graphene grown on
SiC by sublimation of Si, under higher magnetic fields. Here, we report on a
device made of graphene grown by chemical vapour deposition on SiC which
demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4
K. This is explained by a quantum Hall effect with low dissipation, resulting
from strongly localized bulk states at the magnetic length scale, over a wide
magnetic field range. Our results show that graphene-based QHRS can replace
their GaAs counterparts by operating in as-convenient cryomagnetic conditions,
but over an extended magnetic field range. They rely on a promising hybrid and
scalable growth method and a fabrication process achieving low-electron density
devices.Comment: 12 pages, 8 figure
Ultrarobust calibration of an optical lattice depth based on a phase shift
We report on a new method to calibrate the depth of an optical lattice. It
consists in triggering the intrasite dipole mode of the cloud by a sudden phase
shift. The corresponding oscillatory motion is directly related to the
intraband frequencies on a large range of lattice depths. Remarkably, for a
moderate displacement, a single frequency dominates this oscillation for the
zeroth and first order interference pattern observed after a sufficiently long
time-of-flight. The method is robust against atom-atom interactions and the
exact value of the extra external confinement of the initial trapping
potential.Comment: 7 pages, 6 figure
Recommended from our members
Multicenter assessment of quantitative sensory testing (QST) for the detection of neuropathic-like pain responses using the topical capsaicin model
Background: The use of quantitative sensory testing (QST) in multicenter studies has been quite limited, due in part to lack of standardized procedures among centers.
Aim: The aim of this study was to assess the application of the capsaicin pain model as a surrogate experimental human model of neuropathic pain in different centers and verify the variation in reports of QST measures across centers.
Methods: A multicenter study conducted by the Quebec Pain Research Network in six laboratories allowed the evaluation of nine QST parameters in 60 healthy subjects treated with topical capsaicin to model unilateral pain and allodynia. The same measurements (without capsaicin) were taken in 20 patients with chronic neuropathic pain recruited from an independent pain clinic.
Results: Results revealed that six parameters detected a significant difference between the capsaicin-treated and the control skin areas: (1) cold detection threshold (CDT) and (2) cold pain threshold (CPT) are lower on the capsaicin-treated side, indicating a decreased in cold sensitivity; (3) heat pain threshold (HPT) was lower on the capsaicin-treated side in healthy subjects, suggesting an increased heat pain sensitivity; (4) dynamic mechanical allodynia (DMA); (5) mechanical pain after two stimulations (MPS2); and (6) mechanical pain summation after ten stimulations (MPS10), are increased on the capsaicin-treated side, suggesting an increased in mechanical pain (P < 0.002). CDT, CPT and HPT showed comparable effects across all six centers, with CPT and HPT demonstrating the best sensitivity. Data from the patients showed significant difference between affected and unaffected body side but only with CDT.
Conclusion: These results provide further support for the application of QST in multicenter studies examining normal and pathological pain responses
- …
