3 research outputs found

    Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii

    Get PDF
    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious economic damage to soft fruits. Previously we showed by mass spectrometry the presence of the neuropeptide myosuppressin (TDVDHVFLRFamide) in the nerve bundle suggesting that this peptide is involved in regulating the function of the crop, which in adult dipteran insects has important roles in the processing of food, the storage of carbohydrates and the movement of food into the midgut for digestion. In the present study antibodies that recognise the C-terminal RFamide epitope of myosuppressin stain axons in the crop nerve bundle and reveal peptidergic fibres covering the surface of the crop. We also show using an in vitro bioassay that the neuropeptide is a potent inhibitor (EC50 of 2.3 nM) of crop contractions and that this inhibition is mimicked by the non-peptide myosuppressin agonist, benzethonium chloride (Bztc). Myosuppressin also inhibited the peristaltic contractions of the adult midgut, but was a much weaker agonist (EC50 = 5.7 μM). The oral administration of Bztc (5 mM) in a sucrose diet to adult female D. suzukii over 4 hours resulted in less feeding and longer exposure to dietary Bztc led to early mortality. We therefore suggest that myosuppressin and its cognate receptors are potential targets for disrupting feeding behaviour of adult D. suzukii

    Structure–activity and immunochemical data provide evidence of developmental- and tissue-specific myosuppressin signaling

    Full text link
    Myosuppressin peptides dramatically diminish contractions of the gut and heart. Thus, delineating mechanisms involved in myosuppressin signaling may provide insight into peptidergic control of muscle contractility. Drosophila myosuppressin (DMS, TDVDHVFLRFamide) structure-activity relationship (SAR) was investigated to identify an antagonist and explore signaling. Alanyl-substituted, N-terminal truncated, and modified amino acid analogs identified residues and peptide length required for activity. Immunochemistry independently provided insight into myosuppressin mechanisms. DMS decreased gut motility and cardiac contractility dose dependently; the different effective concentrations at half maximal-response were indicative of tissue-specific mechanisms. Replacement of aspartic acid 2 (D2) generated an analog with different developmental- and tissue-specific effects; [A2] DMS mimicked DMS in adult gut (100% inhibition), yet decreased larval gut contractions by only 32% with increased potency in pupal heart (126% inhibition). The DMS active core differed across development and in tissues; adult (DHVFLRFamide) and larval gut (TDVDHVFLRFamide), and adult (VFLRFamide) and pupal heart (VFLRFamide). Substitution of D2 and D4 with a modified amino acid, p-benzoyl-phenylalanine, produced developmental-and tissue-specific antagonists. In the presence of protease inhibitors, DMS and VFLRFamide were more effective in adult gut, but lower or unchanged in pupal heart compared to peptide or analog alone, respectively. DMS-specific antisera stained neurons that innervated the gut or heart. This study describes novel antagonists and data to identify developmental- and tissue-specific mechanisms underlying the pleotropic effects of myosuppressin in muscle physiology
    corecore