201 research outputs found

    Genomic Runs of Homozygosity Record Population History and Consanguinity

    Get PDF
    The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (N(e)), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental N(e) (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects

    MUC1 and Polarity Markers INADL and SCRIB Identify Salivary Ductal Cells

    Get PDF
    Current treatments for xerostomia/dry mouth are palliative and largely ineffective. A permanent clinical resolution is being developed to correct hyposalivation using implanted hydrogel-encapsulated salivary human stem/progenitor cells (hS/PCs) to restore functional salivary components and increase salivary flow. Pluripotent epithelial cell populations derived from hS/PCs, representing a basal stem cell population in tissue, can differentiate along either secretory acinar or fluid-transporting ductal lineages. To develop tissue-engineered salivary gland replacement tissues, it is critical to reliably identify cells in tissue and as they enter these alternative lineages. The secreted protein α-amylase, the transcription factor MIST1, and aquaporin-5 are typical markers for acinar cells, and K19 is the classical ductal marker in salivary tissue. We found that early ductal progenitors derived from hS/PCs do not express K19, and thus earlier markers were needed to distinguish these cells from acinar progenitors. Salivary ductal cells express distinct polarity complex proteins that we hypothesized could serve as lineage biomarkers to distinguish ductal cells from acinar cells in differentiating hS/PC populations. Based on our studies of primary salivary tissue, both parotid and submandibular glands, and differentiating hS/PCs, we conclude that the apical marker MUC1 along with the polarity markers INADL/PATJ and SCRIB reliably can identify ductal cells in salivary glands and in ductal progenitor populations of hS/PCs being used for salivary tissue engineering. Other markers of epithelial maturation, including E-cadherin, ZO-1, and partition complex component PAR3, are present in both ductal and acinar cells, where they can serve as general markers of differentiation but not lineage markers

    Characteristics of post hoc subgroup analyses of oncology clinical trials: A systematic review

    Get PDF
    BACKGROUND: Subgroup analyses in clinical trials assess intervention effects on specific patient subgroups, ensuring generalizability. However, they are usually only able to generate hypotheses rather than definitive conclusions. This study examined the prevalence and characteristics of post hoc subgroup analysis in oncology. METHODS: We systematically reviewed published subgroup analyses from 2000 to 2022. We included articles presenting secondary, post hoc, or subgroup analyses of interventional clinical trials in oncology, cancer survivorship, or cancer screening, published separately from the original clinical trial publication. We collected cancer type, year of publication, where and how subgroup analyses were reported, and funding. RESULTS: Out of 16 487 screened publications, 1612 studies were included, primarily subgroup analyses of treatment trials for solid tumors (82%). Medical writers contributed to 31% of articles, and 58% of articles reported conflicts of interest. Subgroup analyses increased significantly over time, with 695 published between 2019 and 2022, compared to 384 from 2000 to 2014. Gastrointestinal tumors (25%) and lymphoid lineage tumors (39%) were the most frequently studied solid and hematological malignancies, respectively. Industry funding and reporting of conflicts of interest increased over time. Subgroup analyses often neglected to indicate their secondary nature in the title. Most authors were from high-income countries, most commonly North America (45%). CONCLUSIONS: This study demonstrates the rapidly growing use of post hoc subgroup analysis of oncology clinical trials, revealing that the majority are supported by pharmaceutical companies, and they frequently fail to indicate their secondary nature in the title. Given the known methodological limitations of subgroup analyses, caution is recommended among authors, readers, and reviewers when conducting and interpreting these studies

    Common Sense Oncology principles for the design, analysis, and reporting of phase 3 randomised clinical trials

    Get PDF
    Common Sense Oncology (CSO) prioritises treatments providing meaningful benefits for people with cancer. Here, we describe CSO principles aimed at improving the design, analysis, and reporting of randomised, controlled, phase 3 clinical trials evaluating cancer treatments. These principles include: (1) control treatment should be the best current standard of care; (2) the preferred primary endpoint is overall survival or a validated surrogate; (3) an absolute measure of benefit should be provided, such as the difference between groups in median overall survival times or the proportion of surviving patients at a prespecified time; (4) health-related quality of life should be at least a secondary endpoint; (5) toxicity should be described objectively without subjective language diminishing its importance; (6) trials should be designed to show or rule out clinically meaningful differences in outcomes, rather than a statistically significant difference alone; (7) censoring should be detailed, and sensitivity analyses done to determine its possible effects; (8) experimental treatments known to improve overall survival at later disease stages should be offered and funded for patients progressing in the control group; and (9) reports of trials should include a lay-language summary. We include checklists to guide compliance with these principles. By encouraging adherence, CSO aims to ensure that clinical trials yield results that are scientifically robust and meaningful to patients.</p

    Cancer-specific mortality in multiple myeloma: a population-based retrospective cohort study

    Get PDF
    Survival has improved in patients diagnosed with multiple myeloma (MM) over the last two decades; however, there remains a paucity of data on the causes of death in MM patients and whether causes of death change during the disease trajectory. We conducted a retrospective population-based study to evaluate the rates of MM-specific versus non-MM cause of death and to identify factors associated with cause-specific death in MM patients, stratified into autologous stem cell transplant (ASCT) and non-ASCT cohorts. A total of 6,677 patients were included, 2,576 in the ASCT group and 4,010 in the non-ASCT group. Eight hundred and seventy-three (34%) ASCT patients and 2,787 (68%) non-ASCT patients died during the follow-up period. MM was the most frequent causes of death, causing 74% of deaths in the ASCT group and 67% in the non-ASCT group. Other cancers were the second leading causes of death, followed by cardiac and infectious diseases. Multivariable analysis demonstrated that a more recent year of diagnosis and novel agent use within 1 year of diagnosis were associated with a decreased risk of MM-specific death, whereas a history of previous non-MM cancer, older age, and the presence of CRAB criteria at diagnosis increased the risk of non-MM death. Our data suggests that despite improvement in MM outcomes in recent years, MM remains the greatest threat to overall survival for patients. Further advances in the development of effective MM therapeutic agents in both ASCT and non-ASCT populations and patient access to them is needed to improve outcomes

    Toxoplasma gondii IgG serointensity is positively associated with frailty

    Get PDF
    [Abstract] Background: Persistent inflammation related to aging ("inflammaging") is exacerbated by chronic infections and contributes to frailty in older adults. We hypothesized associations between Toxoplasma gondii (T. gondii), a common parasite causing an oligosymptomatic unremitting infection, and frailty, and secondarily between T. gondii and previously reported markers of immune activation in frailty. Methods: We analyzed available demographic, social, and clinical data in Spanish and Portuguese older adults [N = 601; age: mean (SD) 77.3 (8.0); 61% women]. Plasma T. gondii immunoglobulin G (IgG) serointensity was measured with an enzyme-linked immunosorbent assay. The Fried criteria were used to define frailty status. Validated translations of Mini-Mental State Examination, Geriatric Depression Scale, and the Charlson Comorbidity Index were used to evaluate confounders. Previously analyzed biomarkers that were significantly associated with frailty in both prior reports and the current study, and also related to T. gondii serointensity, were further accounted for in multivariable logistic models with frailty as outcome. Results: In T. gondii-seropositives, there was a significant positive association between T. gondii IgG serointensity and frailty, accounting for age (p = .0002), and resisting adjustment for multiple successive confounders. Among biomarkers linked with frailty, kynurenine/tryptophan and soluble tumor necrosis factor receptor II were positively associated with T. gondii serointensity in seropositives (p < .05). Associations with other biomarkers were not significant. Conclusions: This first reported association between T. gondii and frailty is limited by a cross-sectional design and warrants replication. While certain biomarkers of inflammaging were associated with both T. gondii IgG serointensity and frailty, they did not fully mediate the T. gondii-frailty association.info:eu-repo/grantAgreement/AEI/Programa Estatal de I+D+i Orientado a los Retos de la Sociedad/PID2020-113788RB-I00/ES/IDENTIFICACION DE FACTORES DE RIESGO Y BIOMARCADORES DE VULNERABILIDAD AL DETERIORO COGNITIVO Y FISICO EN EL ENVEJECIMIENTOXunta de Galicia; ED431B 2022/16Ministerio de Educación, Cultura y Deportes (España); BEAGAL18/0014
    corecore