5,958 research outputs found
Big data and humanitarian supply networks: Can Big Data give voice to the voiceless?
This is the author's accepted manuscript. The final published article is available from the link below. Copyright © 2013 IEEE.Billions of US dollars are spent each year in emergency aid to save lives and alleviate the suffering of those affected by disaster. This aid flows through a humanitarian system that consists of governments, different United Nations agencies, the Red Cross movement and myriad non-governmental organizations (NGOs). As scarcer resources, financial crisis and economic inter-dependencies continue to constrain humanitarian relief there is an increasing focus from donors and governments to assess the impact of humanitarian supply networks. Using commercial (`for-profit') supply networks as a benchmark; this paper exposes the counter-intuitive competition dynamic of humanitarian supply networks, which results in an open-loop system unable to calibrate supply with actual need and impact. In that light, the phenomenon of Big Data in the humanitarian field is discussed and an agenda for the `datafication' of the supply network set out as a means of closing the loop between supply, need and impact
Star Formation Around Super-Massive Black Holes
The presence of young massive stars orbiting on eccentric rings within a few
tenths of a parsec of the supermassive black hole in the Galactic centre is
challenging for theories of star formation. The high tidal shear from the black
hole should tear apart the molecular clouds that form stars elsewhere in the
Galaxy, while transporting the stars to the Galactic centre also appears
unlikely during their stellar lifetimes. We present numerical simulations of
the infall of a giant molecular cloud that interacts with the black hole. The
transfer of energy during closest approach allows part of the cloud to become
bound to the black hole, forming an eccentric disc that quickly fragments to
form stars. Compressional heating due to the black hole raises the temperature
of the gas to 100-1000K, ensuring that the fragmentation produces relatively
high stellar masses. These stars retain the eccentricity of the disc and, for a
sufficiently massive initial cloud, produce an extremely top-heavy distribution
of stellar masses. This potentially repetitive process can therefore explain
the presence of multiple eccentric rings of young stars in the presence of a
supermassive black hole.Comment: 20 pages includingh 7 figures. "This is the author's version of the
work. It is posted here by permission of the AAAS for personal use, not for
redistribution. The definitive version was published in Science, 321, (22
August 2008), doi:10.1126/science.1160653". Reprints and animations can be
found at http://star-www.st-and.ac.uk/~iab1
Improved efficiency of nutrient and water use for high quality field vegetable production using fertigation
Drip-based fertigation may improve the application efficiency of water and nutrients while maintaining or improving marketable yield and quality at harvest and post-harvest. Two plantings of lettuce (Lactuca sativa) were grown in the UK, with six N treatments and two methods of irrigation and N application. The conventional overhead irrigated treatments had all N applied in the base dressing with irrigation scheduled from SMD calculations. The closed loop treatments had nitrogen and irrigation delivered via drip automatically controlled by a sensor and logger system. The work established that water content in the root zone can be monitored in real time using horizontally oriented soil moisture sensors linked to data logging and telemetry, and that these data can be used to automatically trigger drip irrigation for commercially grown field vegetables. When the closed loop irrigation control was combined with fertigation treatments, lettuce crops were grown with savings of up to 60% and 75% of water and nitrogen respectively, compared to standard UK production systems. However, excess supply of N through fertigation rather than solid fertiliser was more detrimental to marketable yield and post harvest quality highlighting that care is needed when selecting N rates for fertigation
Simulating Black Hole White Dwarf Encounters
The existence of supermassive black holes lurking in the centers of galaxies
and of stellar binary systems containing a black hole with a few solar masses
has been established beyond reasonable doubt. The idea that black holes of
intermediate masses ( \msun) may exist in globular star clusters has
gained credence over recent years but no conclusive evidence has been
established yet. An attractive feature of this hypothesis is the potential to
not only disrupt solar-type stars but also compact white dwarf stars. In close
encounters the white dwarfs can be sufficiently compressed to thermonuclearly
explode. The detection of an underluminous thermonuclear explosion accompanied
by a soft, transient X-ray signal would be compelling evidence for the presence
of intermediate mass black holes in stellar clusters. In this paper we focus on
the numerical techniques used to simulate the entire disruption process from
the initial parabolic orbit, over the nuclear energy release during tidal
compression, the subsequent ejection of freshly synthesized material and the
formation process of an accretion disk around the black hole.Comment: 9 pages, 4 figures, Computer Physics Communications, accepted; movie
can be found at http://www.faculty.iu-bremen.de/srosswog/; reference
correcte
The thermodynamics of collapsing molecular cloud cores using smoothed particle hydrodynamics with radiative transfer
We present the results of a series of calculations studying the collapse of
molecular cloud cores performed using a three-dimensional smoothed particle
hydr odynamics code with radiative transfer in the flux-limited diffusion
approximation. The opacities and specific heat capacities are identical for
each calculation. However, we find that the temperature evolution during the
simulations varies significantly when starting from different initial
conditions. Even spherically-symmetric clouds with different initial densities
show markedly different development. We conclude that simple barotropic
equations of state like those used in some previous calculations provide at
best a crude approximation to the thermal behaviour of the gas. Radiative
transfer is necessary to obtain accurate temperatures.Comment: 8 pages, 9 figures, accepted for publication in MNRA
Buffet characteristics of the F-8 supercritical wing airplane
The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator
Numerical Simulations of Highly Porous Dust Aggregates in the Low-Velocity Collision Regime
A highly favoured mechanism of planetesimal formation is collisional growth.
Single dust grains, which follow gas flows in the protoplanetary disc, hit each
other, stick due to van der Waals forces and form fluffy aggregates up to
centimetre size. The mechanism of further growth is unclear since the outcome
of aggregate collisions in the relevant velocity and size regime cannot be
investigated in the laboratory under protoplanetary disc conditions. Realistic
statistics of the result of dust aggregate collisions beyond decimetre size is
missing for a deeper understanding of planetary growth. Joining experimental
and numerical efforts we want to calibrate and validate a computer program that
is capable of a correct simulation of the macroscopic behaviour of highly
porous dust aggregates. After testing its numerical limitations thoroughly we
will check the program especially for a realistic reproduction of various
benchmark experiments. We adopt the smooth particle hydrodynamics (SPH)
numerical scheme with extensions for the simulation of solid bodies and a
modified version of the Sirono porosity model. Experimentally measured
macroscopic material properties of silica dust are implemented. We calibrate
and test for the compressive strength relation and the bulk modulus. SPH has
already proven to be a suitable tool to simulate collisions at rather high
velocities. In this work we demonstrate that its area of application can not
only be extended to low-velocity experiments and collisions. It can also be
used to simulate the behaviour of highly porous objects in this velocity regime
to a very high accuracy.The result of the calibration process in this work is
an SPH code that can be utilised to investigate the collisional outcome of
porous dust in the low-velocity regime.Comment: accepted by Astronomy & Astrophysic
Composition Mixing during Blue Straggler Formation and Evolution
We use smoothed-particle hydrodynamics to examine differences between direct
collisions of single stars and binary star mergers in their roles as possible
blue straggler star formation mechanisms. We find in all cases that core helium
in the progenitor stars is largely retained in the core of the remnant, almost
independent of the type of interaction or the central concentration of the
progenitor stars.
We have also modelled the subsequent evolution of the hydrostatic remnants,
including mass loss and energy input from the hydrodynamical interaction. The
combination of the hydrodynamical and hydrostatic models enables us to predict
that little mixing will occur during the merger of two globular cluster stars
of equal mass. In contrast to the results of Proctor Sills, Bailyn, & Demarque
(1995), we find that neither completely mixed nor unmixed models can match the
absolute colors of observed blue stragglers in NGC 6397 at all luminosity
levels. We also find that the color distribution is probably the crucial test
for explanations of BSS formation - if stellar collisions or mergers are the
correct mechanisms, a large fraction of the lifetime of the straggler must be
spent away from the main sequence. This constraint appears to rule out the
possibility of completely mixed models. For NGC 6397, unmixed models predict
blue straggler lifetimes ranging from about 0.1 to 4 Gyr, while completely
mixed models predict a range from about 0.6 to 4 Gyr.Comment: AASTeX, 28 pg., accepted for ApJ, also available at
http://ucowww.ucsc.edu/~erics/bspaper.htm
- …
