1,228 research outputs found

    Adsorption of 2,2 '-dithiodipyridine as a tool for the assembly of silver nanoparticles

    Get PDF
    Silver nanostructured thin films stabilized by 2,2’-dithiodipyridine (2dtpy) were prepared. The Ag nanoparticles were obtained by treating the complex [Ag(2dtpy)]NO3 with NaBH4 in a methanol–toluene mixture. The films were transferred to borosilicate glass slips by a dip-coating method and were found to consist of Ag nanoparticles possibly linked via 2dtpy molecules. Surface-enhanced Raman scattering (SERS) studies have offered the possibility of investigating the adsorption modes of 2dtpy at the Ag nanoparticle surfaces in the fil

    Transport in single-molecule transistors: Kondo physics and negative differential resistance

    Full text link
    We report two examples of transport phenomena based on sharp features in the effective density of states of molecular-scale transistors: Kondo physics in C60_{60}-based devices, and gate-modulated negative differential resistance (NDR) in ``control'' devices that we ascribe to adsorbed contamination. We discuss the need for a statistical approach to device characterization, and the criteria that must be satisfied to infer that transport is based on single molecules. We describe apparent Kondo physics in C60_{60}-based single-molecule transistors (SMTs), including signatures of molecular vibrations in the Kondo regime. Finally, we report gate-modulated NDR in devices made without intentional molecular components, and discuss possible origins of this property.Comment: 15 pages, 8 figures. To appear in Oct. 2004 issue of Nanotechnology, proceedings of International Conference on Nanoscale Devices and Systems Integratio

    High-yield TiO(2) nanowire synthesis and single nanowire field-effect transistor fabrication

    Get PDF
    We report a facile method for synthesizing single-crystal rutile TiO 2 nanowires using atmospheric-pressure, chemical vapor deposition with Ti and TiO as precursors. The synthesis is found to depend critically on the predeposition of a layer of metallic Ti on the Ni catalysts layer. The omission of this step seems previously to have impeded the efficient synthesis of titania nanowires. Single-nanowire field-effect transistors showed the TiO2 nanowires to be n -type semiconductors with conductance activation energy of ???58 meV.open242

    Design Principles for Plasmonic Nanoparticle Devices

    Get PDF
    For all applications of plasmonics to technology it is required to tailor the resonance to the optical system in question. This chapter gives an understanding of the design considerations for nanoparticles needed to tune the resonance. First the basic concepts of plasmonics are reviewed with a focus on the physics of nanoparticles. An introduction to the finite element method is given with emphasis on the suitability of the method to nanoplasmonic device simulation. The effects of nanoparticle shape on the spectral position and lineshape of the plasmonic resonance are discussed including retardation and surface curvature effects. The most technologically important plasmonic materials are assessed for device applicability and the importance of substrates in light scattering is explained. Finally the application of plasmonic nanoparticles to photovoltaic devices is discussed.Comment: 29 pages, 15 figures, part of an edited book: "Linear and Non-Linear Nanoplasmonics

    Slow fluctuations in enhanced Raman scattering and surface roughness relaxation

    Full text link
    We propose an explanation for the recently measured slow fluctuations and ``blinking'' in the surface enhanced Raman scattering (SERS) spectrum of single molecules adsorbed on a silver colloidal particle. We suggest that these fluctuations may be related to the dynamic relaxation of the surface roughness on the nanometer scale and show that there are two classes of roughness with qualitatively different dynamics. The predictions agree with measurements of surface roughness relaxation. Using a theoretical model for the kinetics of surface roughness relaxation in the presence of charges and optical electrical fields, we predict that the high-frequency electromagnetic field increases both the effective surface tension and the surface diffusion constant and thus accelerates the surface smoothing kinetics and time scale of the Raman fluctuations in manner that is linear with the laser power intensity, while the addition of salt retards the surface relaxation kinetics and increases the time scale of the fluctuations. These predictions are in qualitative agreement with the Raman experiments

    Growth direction determination of a single RuO2 nanowire by polarized Raman spectroscopy

    Get PDF
    The dependence of band intensities in the Raman spectrum of individual single-crystal ruthenium dioxide (RuO2) nanowires on the angle between the plane of polarization of the exciting (and collected) light and the long axis of the nanowire, is shown to be a simple, complementary technique to high resolution transmission electron microscopy (HRTEM) for determining nanowire growth direction. We show that excellent agreement exists between what is observed and what is predicted for the polarization angle dependence of the intensities of the nanowires' E-g (525 cm(-1)) and the B-2g (714 cm(-1)) Raman bands, only by assuming that the nanowires grow along the (001) crystallographic direction, as confirmed by HRTEM.open9

    Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating

    Full text link
    We model the photoelectric emission from and charging of interstellar dust and obtain photoelectric gas heating efficiencies as a function of grain size and the relevant ambient conditions. Using realistic grain size distributions, we evaluate the net gas heating rate for various interstellar environments, and find less heating for dense regions characterized by R_V=5.5 than for diffuse regions with R_V=3.1. We provide fitting functions which reproduce our numerical results for photoelectric heating and recombination cooling for a wide range of interstellar conditions. In a separate paper we will examine the implications of these results for the thermal structure of the interstellar medium. Finally, we investigate the potential importance of photoelectric heating in H II regions, including the warm ionized medium. We find that photoelectric heating could be comparable to or exceed heating due to photoionization of H for high ratios of the radiation intensity to the gas density. We also find that photoelectric heating by dust can account for the observed variation of temperature with distance from the galactic midplane in the warm ionized medium.Comment: 50 pages, including 18 figures; corrected title and abstract field

    Plasmonic atoms and plasmonic molecules

    Get PDF
    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for a construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.Comment: 30 pages, 16 figure

    Optical resonances on sub-wavelength silver lamellar gratings

    Get PDF
    Copyright © 2008 Optical Society of America. This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-26-22003 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.The optical response of sub-wavelength silver lamellar gratings has been theoretically investigated. Two distinct types of resonance have been predicted for incident radiation with E-field perpendicular to the long axis of the wires. The first resonance has been identified as a cavity mode resonance that is associated with transmission enhancement. The second resonance has been identified as an entirely new horizontal plasmon resonance on the incident (and transmission) surfaces of the wires of the grating. Normal surface plasmon modes are investigated on discontinuous gratings, and their relation to those found on continuous gratings is highlighted by focusing on the perturbation effect of the discontinuities. It is shown that the new horizontal plasmon mode is in no way related to the well known diffractively coupled surface plasmon, and is shown to have a particle plasmon-like nature. It is therefore termed a horizontal particle plasmon, and may be either an uncoupled horizontal particle plasmon resonance (a 1-dimensional particle plasmon) or a coupled horizontal particle plasmon resonance (a 2-dimensional particle plasmon) depending on the height of the grating. It is shown that this resonance may result in a reflection efficiency that is very high, even when the grating would be optically thin if it were a homogeneous film, therefore, it behaves as an inverse wire grid polariser as it reflects more TM than TE incident radiation

    Light emission from a scanning tunneling microscope: Fully retarded calculation

    Full text link
    The light emission rate from a scanning tunneling microscope (STM) scanning a noble metal surface is calculated taking retardation effects into account. As in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev. B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric properties of tip and sample are described by experimentally measured dielectric functions. The calculations are based on exact diffraction theory through the vector equivalent of the Kirchoff integral. The present results are qualitatively similar to those of the non-retarded calculations. The light emission spectra have pronounced resonance peaks due to the formation of a tip-induced plasmon mode localized to the cavity between the tip and the sample. At a quantitative level, the effects of retardation are rather small as long as the sample material is Au or Cu, and the tip consists of W or Ir. However, for Ag samples, in which the resistive losses are smaller, the inclusion of retardation effects in the calculation leads to larger changes: the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These changes improve the agreement with experiment. For a Ag sample and an Ir tip, the quantum efficiency is \approx 104^{-4} emitted photons in the visible frequency range per tunneling electron. A study of the energy dissipation into the tip and sample shows that in total about 1 % of the electrons undergo inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear in Phys. Rev. B (15 October 1998
    corecore