2,623 research outputs found
The story of Oh: the aesthetics and rhetoric of a common vowel sound
Studies in Musical Theatre is the only peer-reviewed journal dedicated to musical theatre. It was launched in 2007 and is now in its seventh volume. It has an extensive international readership and is edited by Dominic Symonds and George Burrows.
This article investigates the use of the ‘word’ ‘Oh’ in a variety of different performance idioms. Despite its lack of ‘meaning’, the sound is used in both conversation and poetic discourse, and I discuss how it operates communicatively and expressively through contextual resonances, aesthetic manipulation and rhetorical signification. The article first considers the aesthetically modernist work of Cathy Berberian in Bussotti’s La Passion Selon Sade; then it considers the rhetorically inflected use of ‘Oh’ to construct social resonance in popular song;finally, it discusses two important uses of the sound ‘Oh’ which bookend the Broadway musical Oklahoma!, serving to consolidate the allegorical and musico-dramatic narrative of the show
Formation of Multipartite Entanglement Using Random Quantum Gates
The formation of multipartite quantum entanglement by repeated operation of
one and two qubit gates is examined. The resulting entanglement is evaluated
using two measures: the average bipartite entanglement and the Groverian
measure. A comparison is made between two geometries of the quantum register: a
one dimensional chain in which two-qubit gates apply only locally between
nearest neighbors and a non-local geometry in which such gates may apply
between any pair of qubits. More specifically, we use a combination of random
single qubit rotations and a fixed two-qubit gate such as the controlled-phase
gate. It is found that in the non-local geometry the entanglement is generated
at a higher rate. In both geometries, the Groverian measure converges to its
asymptotic value more slowly than the average bipartite entanglement. These
results are expected to have implications on different proposed geometries of
future quantum computers with local and non-local interactions between the
qubits.Comment: 7 pages, 5 figure
Reaching back: the relative strength of the retroactive emotional attentional blink
Visual stimuli with emotional content appearing in close temporal proximity either before or after a target a stimulus can hinder conscious perceptual processing of the target via an emotional attentional blink (EAB). This occurs for targets that appear after the emotional stimulus (forward EAB) and for those appearing before the emotional stimulus (retroactive EAB). Additionally, the traditional attentional blink (AB) occurs because detection of any target hinders detection of a subsequent target. The present study investigated the relations between these different attentional processes. Rapid sequences of landscape images were presented to thirty-one male participants with occasional landscape targets (rotated images). For the forward EAB, emotional or neutral distractor images of people were presented before the target; for the retroactive EAB, such images were also targets and presented after the landscape target. In the latter case, this design allowed investigation of the AB as well. Erotic and gory images caused more EABs than neutral images, but there were no differential effects on the AB. This pattern is striking because while using different target categories (rotated landscapes, people) appears to have eliminated the AB, the retroactive EAB still occurred, offering additional evidence for the power of emotional stimuli over conscious attention
Methods and tools supporting urban resilience planning: experiences from Cork, Ireland
To prevent flood disasters, policymakers call for resilient cities which are better able to cope with flood hazards. However, actual adoption of resilience measures in urban planning is still limited, partly because it is not sufficiently clear how and to what extent resilience should and can be enhanced. To develop resilience strategies, information on the current resilience and on the effects of measures should be available. Since cities are complex systems, an assessment of resilience requires the input of different actors. To obtain and combine this input, a comprehensive approach which brings together many actors is required. Furthermore, resilience must be integrated in planning frameworks in order to enhance adoption by city policy makers. Tools which support and structure the contribution of different disciplines and actors will help to obtain information on the current resilience and to develop a shared vision on measures to enhance urban resilience. We illustrate our view with an example on Cork, Ireland
Rare K and B Decays in the Littlest Higgs Model without T-Parity
We analyze rare K and B decays in the Littlest Higgs (LH) model without
T-parity. We find that the final result for the Z^0-penguin contribution
contains a divergence that is generated by the one-loop radiative corrections
to the currents corresponding to the dynamically broken generators. Including
an estimate of these logarithmically enhanced terms, we calculate the branching
ratios for the decays K^+ -> pi^+ nu bar nu, K_L -> pi^0 nu bar nu, B_{s,d} ->
mu^+ mu^- and B -> X_{s,d} nu bar nu. We find that for the high energy scale
f=O(2-3) TeV, as required by the electroweak precision studies, the enhancement
of all branching ratios amounts to at most 15% over the SM values. On the
technical side we identify a number of errors in the existing Feynman rules in
the LH model without T-parity that could have some impact on other analyses
present in the literature. Calculating penguin and box diagrams in the unitary
gauge, we find divergences in both contributions that are cancelled in the sum
except for the divergence mentioned above.Comment: 39 pages, 8 figures, typos corrected, comment on (2.17) and (2.18)
added, references added, results unchange
The Stellar and Gaseous Contents of the Orion Dwarf Galaxy
We present new KPNO 0.9-m optical and VLA HI spectral line observations of
the Orion dwarf galaxy. This nearby (D ~ 5.4 Mpc), intermediate-mass (M_dyn =
1.1x10^10 Solar masses) dwarf displays a wealth of structure in its neutral
ISM, including three prominent "hole/depression" features in the inner HI disk.
We explore the rich gas kinematics, where solid-body rotation dominates and the
rotation curve is flat out to the observed edge of the HI disk (~6.8 kpc). The
Orion dwarf contains a substantial fraction of dark matter throughout its disk:
comparing the 4.7x10^8 Solar masses of detected neutral gas with estimates of
the stellar mass from optical and near-infrared imaging (3.7x10^8 Solar masses)
implies a mass-to-light ratio of ~13. New H alpha observations show only
modest-strength current star formation (~0.04 Solar masses per year); this star
formation rate is consistent with our 1.4 GHz radio continuum non-detection.Comment: Astronomical Journal, in press. Full-resolution version available
from http://www.macalester.edu/~jcannon/pubs.htm
N=1* model and glueball superpotential from Renormalization-Group-improved perturbation theory
A method for computing the low-energy non-perturbative properties of SUSY
GFT, starting from the microscopic lagrangian model, is presented. The method
relies on covariant SUSY Feynman graph techniques, adapted to low energy, and
Renormalization-Group-improved perturbation theory. We apply the method to
calculate the glueball superpotential in N=1 SU(2) SYM and obtain a potential
of the Veneziano-Yankielowicz type.Comment: 19 pages, no figures; added references; note added at the end of the
paper; version to appear in JHE
Introduction to topological superconductivity and Majorana fermions
This short review article provides a pedagogical introduction to the rapidly
growing research field of Majorana fermions in topological superconductors. We
first discuss in some details the simplest "toy model" in which Majoranas
appear, namely a one-dimensional tight-binding representation of a p-wave
superconductor, introduced more than ten years ago by Kitaev. We then give a
general introduction to the remarkable properties of Majorana fermions in
condensed matter systems, such as their intrinsically non-local nature and
exotic exchange statistics, and explain why these quasiparticles are suspected
to be especially well suited for low-decoherence quantum information
processing. We also discuss the experimentally promising (and perhaps already
successfully realized) possibility of creating topological superconductors
using semiconductors with strong spin-orbit coupling, proximity-coupled to
standard s-wave superconductors and exposed to a magnetic field. The goal is to
provide an introduction to the subject for experimentalists or theorists who
are new to the field, focusing on the aspects which are most important for
understanding the basic physics. The text should be accessible for readers with
a basic understanding of quantum mechanics and second quantization, and does
not require knowledge of quantum field theory or topological states of matter.Comment: 21 pages, 5 figure
The M81 Group Dwarf Irregular Galaxy DDO 165. II. Connecting Recent Star Formation with ISM Structures and Kinematics
We compare the stellar populations and complex neutral gas dynamics of the
M81 group dIrr galaxy DDO 165 using data from the HST and the VLA. Paper I
identified two kinematically distinct HI components, multiple localized high
velocity gas features, and eight HI holes and shells (the largest of which
spans ~2.2x1.1 kpc). Using the spatial and temporal information from the
stellar populations in DDO 165, we compare the patterns of star formation over
the past 500 Myr with the HI dynamics. We extract localized star formation
histories within 6 of the 8 HI holes identified in Paper I, as well as 23 other
regions that sample a range of stellar densities and neutral gas properties.
From population synthesis modeling, we derive the energy outputs (from stellar
winds and supernovae) of the stellar populations within these regions over the
last 100 Myr, and compare with refined estimates of the energies required to
create the HI holes. In all cases, we find that "feedback" is energetically
capable of creating the observed structures in the ISM. Numerous regions with
significant energy inputs from feedback lack coherent HI structures but show
prominent localized high velocity gas features; this feedback signature is a
natural product of temporally and spatially distributed star formation. In DDO
165, the extended period of heightened star formation activity (lasting more
than 1 Gyr) is energetically capable of creating the observed holes and high
velocity gas features in the neutral ISM.Comment: The Astrophysical Journal, in press. Full-resolution version
available on request from the first autho
- …
