511 research outputs found

    The first ultra-high resolution Digital Terrain Model of the shallow-water sector around Lipari Island (Aeolian Islands, Italy)

    Get PDF
    Very high resolution bathymetric map obtained through multibeam echosounders data are crucial to generate accurate Digital Terrain Models from which the morphological setting of active volcanic areas can be analyzed in detail. Here we show and discuss the main results from the first multibeam bathymetric survey performed in shallow-waters around the island of Lipari, the largest and the most densely populated of the Aeolian Islands (southern Italy). Data have been collected in the depth range of 0.1-150 m and complete the already existent high-resolution multibeam bathymetry realized between 100 and 1300 m water depth. The new ultrahigh resolution bathymetric maps at 0.1-0.5 m provide new insights on the shallow seafloor of Lipari, allowing to detail a large spectrum of volcanic, erosive-depositional and anthropic features. Moreover, the presented data allow outlining the recent morphological evolution of the shallow coastal sector of this active volcanic island, indicating the presence of potential geo-hazard factors in shallow waters

    Nanocomposite field effect transistors based on zinc oxide/polymer blends

    Get PDF
    The authors have examined the field effect behavior of nanocomposite field effect transistors containing ZnO (zinc oxide) tetrapods or nanocrystals dispersed in a polymer matrix of poly[2-methoxy,5-(2-ethylhexyloxy)-1,4- phenylenevinylene] (MEH-PPV). The electrical characteristics of ZnO tetrapods/MEH-PPV composite devices exhibit an increase in hole mobility up to three orders of magnitude higher than the polymer MEH-PPV device. © 2007 American Institute of Physics.published_or_final_versio

    The size of electron-hole pairs in pi conjugated systems

    Get PDF
    We have performed momentum dependent electron energy-loss studies of the electronic excitations in sexithiophene and compared the results to those from parent oligomers. Our experiment probes the dynamic structure factor S(q,omega)and we show that the momentum dependent intensity variation of the excitations observed can be used to extract the size of the electron-hole pair created in the excitation process. The extension of the electron-hole pairs along the molecules is comparable to the length of the molecules and thus maybe only limited by structural constraints. Consequently, the primary intramolecular electron-hole pairs are relatively weakly bound. We find no evidence for the formation of excitations localized on single thiophene units.Comment: RevTex, 3 figures, to appear in Physical Review Letter

    Caratterizzazione dell’ambiente marino dei Campi Flegrei. Risultati preliminari della campagna oceanografica RICAMAR 2013

    Get PDF
    The caldera of the Phlegraean Fields (also known as Campi Flegrei) is one of the most dangerous and populated volcanic area in the world, covering an area that comprises the western part of Naples and the Gulf of Pozzuoli. The main peculiarity of current volcanic activity is the gradual and periodic lift (positive or negative) of part of the Earth\u27s surface (bradyseism) combined, only during the positive phase, with a strong sismicity and surficial hydrotermal activity. Deformative models, calibrated using land-based measurements, highlighted the Gulf of Pozzuoli as the area with the largest deformation. Although the network of monitoring sensors on land is well developed and structured, there is a lack of sensing systems for the marine deformation. The activities of RIlievi per la Caratterizzazione dell’Ambiente MARino nel Golfo di Pozzuoli 2013 (RICAMAR2013) project - sinergically conducted by the Italian Navy\u27s Survey Vessel Ammiraglio Magnaghi , the Italian Hydrographic Office (IIM) and the Istituto Nazionale di Geofisica e Vulcanologia (INGV)- were targeted to fulfill this gap. In fact, the creation of marine observatories about the caldera\u27s phenomena will be based on the data collected during these bathymetric, magnetometric, stratigrafic and hydrologic surveys

    Ground state properties of ferromagnetic metal/conjugated polymer interfaces

    Full text link
    We theoretically investigate the ground state properties of ferromagnetic metal/conjugated polymer interfaces. The work is partially motivated by recent experiments in which injection of spin polarized electrons from ferromagnetic contacts into thin films of conjugated polymers was reported. We use a one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to describe the conjugated polymer and one-dimensional tight-binding models to describe the ferromagnetic metal. We consider both a model for a conventional ferromagnetic metal, in which there are no explicit structural degrees of freedom, and a model for a half-metallic ferromagnetic colossal magnetoresistance (CMR) oxide which has explicit structural degrees of freedom. The Fermi energy of the magnetic metallic contact is adjusted to control the degree of electron transfer into the polymer. We investigate electron charge and spin transfer from the ferromagnetic metal to the organic polymer, and structural relaxation near the interface. Bipolarons are the lowest energy charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian. As a result electrons (or holes) transferred into the bulk of the polymer form spinless bipolarons. However, there can be spin density in the polymer localized near the interface.Comment: 7 figure

    Frenkel and charge transfer excitons in C60

    Full text link
    We have studied the low energy electronic excitations of C60 using momentum dependent electron energy-loss spectroscopy in transmission. The momentum dependent intensity of the gap excitation allows the first direct experimental determination of the energy of the 1Hg excitation and thus also of the total width of the multiplet resulting from the gap transition. In addition, we could elucidate the nature of the following excitations - as either Frenkel or charge transfer excitons.Comment: RevTEX, 3 Figures, to appear in Phys. Rev.
    corecore