379 research outputs found

    Nonextensive diffusion as nonlinear response

    Full text link
    The porous media equation has been proposed as a phenomenological ``non-extensive'' generalization of classical diffusion. Here, we show that a very similar equation can be derived, in a systematic manner, for a classical fluid by assuming nonlinear response, i.e. that the diffusive flux depends on gradients of a power of the concentration. The present equation distinguishes from the porous media equation in that it describes \emph{% generalized classical} diffusion, i.e. with r/Dtr/\sqrt Dt scaling, but with a generalized Einstein relation, and with power-law probability distributions typical of nonextensive statistical mechanics

    Moving boundary approximation for curved streamer ionization fronts: Solvability analysis

    Get PDF
    The minimal density model for negative streamer ionization fronts is investigated. An earlier moving boundary approximation for this model consisted of a "kinetic undercooling" type boundary condition in a Laplacian growth problem of Hele-Shaw type. Here we derive a curvature correction to the moving boundary approximation that resembles surface tension. The calculation is based on solvability analysis with unconventional features, namely, there are three relevant zero modes of the adjoint operator, one of them diverging; furthermore, the inner/outer matching ahead of the front has to be performed on a line rather than on an extended region; and the whole calculation can be performed analytically. The analysis reveals a relation between the fields ahead and behind a slowly evolving curved front, the curvature and the generated conductivity. This relation forces us to give up the ideal conductivity approximation, and we suggest to replace it by a constant conductivity approximation. This implies that the electric potential in the streamer interior is no longer constant but solves a Laplace equation; this leads to a Muskat-type problem.Comment: 22 pages, 6 figure

    Thermostatistics of overdamped motion of interacting particles

    Full text link
    We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simulations, that the overdamped motion of interacting particles at T=0, where T is the temperature of a thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For sufficiently high values of T, the distribution of particles becomes Gaussian, so that the classical Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a linear combination of Tsallis and Boltzmann-Gibbs entropies.Comment: 4 pages, 2 figure

    Consequences of the H-Theorem from Nonlinear Fokker-Planck Equations

    Full text link
    A general type of nonlinear Fokker-Planck equation is derived directly from a master equation, by introducing generalized transition rates. The H-theorem is demonstrated for systems that follow those classes of nonlinear Fokker-Planck equations, in the presence of an external potential. For that, a relation involving terms of Fokker-Planck equations and general entropic forms is proposed. It is shown that, at equilibrium, this relation is equivalent to the maximum-entropy principle. Families of Fokker-Planck equations may be related to a single type of entropy, and so, the correspondence between well-known entropic forms and their associated Fokker-Planck equations is explored. It is shown that the Boltzmann-Gibbs entropy, apart from its connection with the standard -- linear Fokker-Planck equation -- may be also related to a family of nonlinear Fokker-Planck equations.Comment: 19 pages, no figure

    Fluid Flows of Mixed Regimes in Porous Media

    Get PDF
    In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are usually treated separately in literature. To study complex flows when all three regimes may be present in different portions of a same domain, we use a single equation of motion to unify them. Several scenarios and models are then considered for slightly compressible fluids. A nonlinear parabolic equation for the pressure is derived, which is degenerate when the pressure gradient is either small or large. We estimate the pressure and its gradient for all time in terms of initial and boundary data. We also obtain their particular bounds for large time which depend on the asymptotic behavior of the boundary data but not on the initial one. Moreover, the continuous dependence of the solutions on initial and boundary data, and the structural stability for the equation are established.Comment: 33 page

    Absence of squirt singularities for the multi-phase Muskat problem

    Get PDF
    In this paper we study the evolution of multiple fluids with different constant densities in porous media. This physical scenario is known as the Muskat and the (multi-phase) Hele-Shaw problems. In this context we prove that the fluids do not develop squirt singularities.Comment: 16 page

    Breakdown of smoothness for the Muskat problem

    Get PDF
    In this paper we show that there exist analytic initial data in the stable regime for the Muskat problem such that the solution turns to the unstable regime and later breaks down i.e. no longer belongs to C4C^4.Comment: 93 pages, 10 figures (6 added

    Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition

    Get PDF
    In the selective withdrawal experiment fluid is withdrawn through a tube with its tip suspended a distance S above a two-fluid interface. At sufficiently low withdrawal rates, Q, the interface forms a steady state hump and only the upper fluid is withdrawn. When Q is increased (or S decreased), the interface undergoes a transition so that the lower fluid is entrained with the upper one, forming a thin steady-state spout. Near this transition the hump curvature becomes very large and displays power-law scaling behavior. This scaling allows for steady-state hump profiles at different flow rates and tube heights to be scaled onto a single similarity profile. I show that the scaling behavior is independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl

    Logarithmic diffusion and porous media equations: a unified description

    Full text link
    In this work we present the logarithmic diffusion equation as a limit case when the index that characterizes a nonlinear Fokker-Planck equation, in its diffusive term, goes to zero. A linear drift and a source term are considered in this equation. Its solution has a lorentzian form, consequently this equation characterizes a super diffusion like a L\'evy kind. In addition is obtained an equation that unifies the porous media and the logarithmic diffusion equations, including a generalized diffusion equation in fractal dimension. This unification is performed in the nonextensive thermostatistics context and increases the possibilities about the description of anomalous diffusive processes.Comment: 5 pages. To appear in Phys. Rev.

    Nonlinear porous medium flow with fractional potential pressure

    Full text link
    We study a porous medium equation, with nonlocal diffusion effects given by an inverse fractional Laplacian operator. We pose the problem in n-dimensional space for all t>0 with bounded and compactly supported initial data, and prove existence of a weak and bounded solution that propagates with finite speed, a property that is nor shared by other fractional diffusion models.Comment: 32 pages, Late
    corecore