382 research outputs found
The Frontal Control of Stopping
Stopping is a critical aspect of brain function. Like other voluntary actions, it is defined by its context as much as by its execution. Its neural substrate must therefore reflect both. Here, we distinguish those elements of the underlying brain circuit that preferentially reflect contextual aspects of stopping from those related to its execution. Contextual complexity of stopping was modulated using a novel "Stop/Change-signal" task, which also allowed us to parameterize the duration of the stopping process. Human magnetoencephalographic activity and behavioral responses were simultaneously recorded. Whereas theta/alpha frequency activity in the right inferior frontal gyrus was most closely associated with the duration of the stopping process, earlier gamma frequency activity in the pre-supplementary motor area was unique in showing contextual modulation. These results differentiate the roles of 2 key frontal regions involved in stopping, a crucial aspect of behavioral control
Interband mixing between two-dimensional states localized in a surface quantum well and heavy hole states of the valence band in narrow gap semiconductor
Theoretical calculations in the framework of Kane model have been carried out
in order to elucidate the role of interband mixing in forming the energy
spectrum of two-dimensional carriers, localized in a surface quantum well in
narrow gap semiconductor. Of interest was the mixing between the 2D states and
heavy hole states in the volume of semiconductor. It has been shown that the
interband mixing results in two effects: the broadening of 2D energy levels and
their shift, which are mostly pronounced for semiconductors with high doping
level. The interband mixing has been found to influence mostly the effective
mass of 2D carriers for large their concentration, whereas it slightly changes
the subband distribution in a wide concentration range.Comment: 12 pages (RevTEX) and 4 PostScript-figure
Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening
The results of tunnelling studies of the energy spectrum of two-dimensional
(2D) states in a surface quantum well in a semiconductor with inverted band
structure are presented. The energy dependence of quasimomentum of the 2D
states over a wide energy range is obtained from the analysis of tunnelling
conductivity oscillations in a quantizing magnetic field. The spin-orbit
splitting of the energy spectrum of 2D states, due to inversion asymmetry of
the surface quantum well, and the broadening of 2D states at the energies, when
they are in resonance with the heavy hole valence band, are investigated in
structures with different strength of the surface quantum well. A quantitative
analysis is carried out within the framework of the Kane model of the energy
spectrum. The theoretical results are in good agreement with the tunnelling
spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on
request from [email protected]
Magnetic Oculomotor Prosthetics for Acquired Nystagmus
PURPOSE: Acquired nystagmus, a highly symptomatic consequence of damage to the substrates of oculomotor control, often is resistant to pharmacotherapy. Although heterogeneous in its neural cause, its expression is unified at the effector-the eye muscles themselves-where physical damping of the oscillation offers an alternative approach. Because direct surgical fixation would immobilize the globe, action at a distance is required to damp the oscillation at the point of fixation, allowing unhindered gaze shifts at other times. Implementing this idea magnetically, herein we describe the successful implantation of a novel magnetic oculomotor prosthesis in a patient. DESIGN: Case report of a pilot, experimental intervention. PARTICIPANT: A 49-year-old man with longstanding, medication-resistant, upbeat nystagmus resulting from a paraneoplastic syndrome caused by stage 2A, grade I, nodular sclerosing Hodgkin's lymphoma. METHODS: We designed a 2-part, titanium-encased, rare-earth magnet oculomotor prosthesis, powered to damp nystagmus without interfering with the larger forces involved in saccades. Its damping effects were confirmed when applied externally. We proceeded to implant the device in the patient, comparing visual functions and high-resolution oculography before and after implantation and monitoring the patient for more than 4 years after surgery. MAIN OUTCOME MEASURES: We recorded Snellen visual acuity before and after intervention, as well as the amplitude, drift velocity, frequency, and intensity of the nystagmus in each eye. RESULTS: The patient reported a clinically significant improvement of 1 line of Snellen acuity (from 6/9 bilaterally to 6/6 on the left and 6/5-2 on the right), reflecting an objectively measured reduction in the amplitude, drift velocity, frequency, and intensity of the nystagmus. These improvements were maintained throughout a follow-up of 4 years and enabled him to return to paid employment. CONCLUSIONS: This work opens a new field of implantable therapeutic devices-oculomotor prosthetics-designed to modify eye movements dynamically by physical means in cases where a purely neural approach is ineffective. Applied to acquired nystagmus refractory to all other interventions, it is shown successfully to damp pathologic eye oscillations while allowing normal saccadic shifts of gaze
From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex
Recent studies have pointed out the importance of transient synchronization
between widely distributed neural assemblies to understand conscious
perception. These neural assemblies form intricate networks of neurons and
synapses whose detailed map for mammals is still unknown and far from our
experimental capabilities. Only in a few cases, for example the C. elegans, we
know the complete mapping of the neuronal tissue or its mesoscopic level of
description provided by cortical areas. Here we study the process of transient
and global synchronization using a simple model of phase-coupled oscillators
assigned to cortical areas in the cerebral cat cortex. Our results highlight
the impact of the topological connectivity in the developing of
synchronization, revealing a transition in the synchronization organization
that goes from a modular decentralized coherence to a centralized synchronized
regime controlled by a few cortical areas forming a Rich-Club connectivity
pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On
Is It Rational to Assume that Infants Imitate Rationally? A Theoretical Analysis and Critique
It has been suggested that preverbal infants evaluate the efficiency of others' actions (by applying a principle of rational action) and that they imitate others' actions rationally. The present contribution presents a conceptual analysis of the claim that preverbal infants imitate rationally. It shows that this ability rests on at least three assumptions: that infants are able to perceive others' action capabilities, that infants reason about and conceptually represent their own bodies, and that infants are able to think counterfactually. It is argued that none of these three abilities is in place during infancy. Furthermore, it is shown that the idea of a principle of rational action suffers from two fallacies. As a consequence, is it suggested that it is not rational to assume that infants imitate rationally. Copyright (C) 2012 S. Karger AG, Base
Solid NURBS Conforming Scaffolding for Isogeometric Analysis
This work introduces a scaffolding framework to compactly parametrise solid structures with conforming NURBS elements for isogeometric analysis. A novel formulation introduces a topological, geometrical and parametric subdivision of the space in a minimal plurality of conforming vectorial elements. These determine a multi-compartmental scaffolding for arbitrary branching patterns. A solid smoothing paradigm is devised for the conforming scaffolding achieving higher than positional geometrical and parametric continuity. Results are shown for synthetic shapes of varying complexity, for modular CAD geometries, for branching structures from tessellated meshes and for organic biological structures from imaging data. Representative simulations demonstrate the validity of the introduced scaffolding framework with scalable performance and groundbreaking applications for isogeometric analysis
Machine phenotyping of cluster headache and its response to verapamil
Cluster headache is characterized by recurrent, unilateral attacks of excruciating pain associated with ipsilateral cranial autonomic
symptoms. Although a wide array of clinical, anatomical, physiological, and genetic data have informed multiple theories about
the underlying pathophysiology, the lack of a comprehensive mechanistic understanding has inhibited, on the one hand, the development of new treatments and, on the other, the identification of features predictive of response to established ones. The first-line
drug, verapamil, is found to be effective in only half of all patients, and after several weeks of dose escalation, rendering therapeutic selection both uncertain and slow. Here we use high-dimensional modelling of routinely acquired phenotypic and MRI data to
quantify the predictability of verapamil responsiveness and to illuminate its neural dependants, across a cohort of 708 patients
evaluated for cluster headache at the National Hospital for Neurology and Neurosurgery between 2007 and 2017. We derive a
succinct latent representation of cluster headache from non-linear dimensionality reduction of structured clinical features, revealing
novel phenotypic clusters. In a subset of patients, we show that individually predictive models based on gradient boosting machines
can predict verapamil responsiveness from clinical (410 patients) and imaging (194 patients) features. Models combining clinical
and imaging data establish the first benchmark for predicting verapamil responsiveness, with an area under the receiver operating
characteristic curve of 0.689 on cross-validation (95% confidence interval: 0.651 to 0.710) and 0.621 on held-out data. In the
imaged patients, voxel-based morphometry revealed a grey matter cluster in lobule VI of the cerebellum (–4, –66, –20) exhibiting
enhanced grey matter concentrations in verapamil non-responders compared with responders (familywise error-corrected
P = 0.008, 29 voxels). We propose a mechanism for the therapeutic effect of verapamil that draws on the neuroanatomy and
neurochemistry of the identified region. Our results reveal previously unrecognized high-dimensional structure within the phenotypic landscape of cluster headache that enables prediction of treatment response with modest fidelity. An analogous approach applied
to larger, globally representative datasets could facilitate data-driven redefinition of diagnostic criteria and stronger, more generalizable predictive models of treatment responsiveness
Test-time unsupervised domain adaptation
Convolutional neural networks trained on publicly available medical imaging datasets (source domain) rarely generalise to different scanners or acquisition protocols (target domain). This motivates the active field of domain adaptation. While some approaches to the problem require labelled data from the target domain, others adopt an unsupervised approach to domain adaptation (UDA). Evaluating UDA methods consists of measuring the model’s ability to generalise to unseen data in the target domain. In this work, we argue that this is not as useful as adapting to the test set directly. We therefore propose an evaluation framework where we perform test-time UDA on each subject separately. We show that models adapted to a specific target subject from the target domain outperform a domain adaptation method which has seen more data of the target domain but not this specific target subject. This result supports the thesis that unsupervised domain adaptation should be used at test-time, even if only using a single target-domain subject
Genetic and neurological foundations of customer orientation: field and experimental evidence
We explore genetic and neurological bases for customer orientation (CO) and contrast them with sales orientation (SO). Study 1 is a field study that establishes that CO, but not SO, leads to greater opportunity recognition. Study 2 examines genetic bases for CO and finds that salespeople with CO are more likely to have the 7R variant of the DRD4 gene. This is consistent with basic research on dopamine receptor activity in the brain that underlies novelty seeking, the reward function, and risk taking. Study 3 examines the neural basis of CO and finds that salespeople with CO, but not SO, experience greater activation of their mirror neuron systems and neural processes associated with empathy. Managerial and research implications are discussed
- …
