2,361 research outputs found
Simulating a single qubit channel using a mixed state environment
We analyze the class of single qubit channels with the environment modeled by
a one-qubit mixed state. The set of affine transformations for this class of
channels is computed analytically, employing the canonical form for the
two-qubit unitary operator. We demonstrate that, 3/8 of the generalized
depolarizing channels can be simulated by the one-qubit mixed state environment
by explicitly obtaining the shape of the volume occupied by this class of
channels within the tetrahedron representing the generalized depolarizing
channels. Further, as a special case, we show that the two-Pauli Channel cannot
be simulated by a one-qubit mixed state environment.Comment: Published version with minor change
Properties and occurrence rates of exoplanet candidates as a function of host star metallicity from the DR25 catalog
Correlations between the occurrence rate of exoplanets and their host star
properties provide important clues about the planet formation processes. We
studied the dependence of the observed properties of exoplanets (radius, mass,
and orbital period) as a function of their host star metallicity. We analyzed
the planetary radii and orbital periods of over 2800 candidates from
the latest data release DR25 (Q1-Q17) with revised planetary radii
based on ~DR2 as a function of host star metallicity (from the Q1-Q17
(DR25) stellar and planet catalog). With a much larger sample and improved
radius measurements, we are able to reconfirm previous results in the
literature. We show that the average metallicity of the host star increases as
the radius of the planet increases. We demonstrate this by first calculating
the average host star metallicity for different radius bins and then
supplementing these results by calculating the occurrence rate as a function of
planetary radius and host star metallicity. We find a similar trend between
host star metallicity and planet mass: the average host star metallicity
increases with increasing planet mass. This trend, however, reverses for masses
: host star metallicity drops with increasing planetary
mass. We further examined the correlation between the host star metallicity and
the orbital period of the planet. We find that for planets with orbital periods
less than 10 days, the average metallicity of the host star is higher than that
for planets with periods greater than 10 days.Comment: 14 pages, 13 Figures, Accepted for publication in The Astronomical
Journa
Literacy improves short-term serial recall of spoken verbal but not visuospatial items - Evidence from illiterate and literate adults
© 2019 Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/It is widely accepted that specific memory processes, such as serial-order memory, are involved in written language development and predictive of reading and spelling abilities. The reverse question, namely whether orthographic abilities also affect serial-order memory, has hardly been investigated. In the current study, we compared 20 illiterate people with a group of 20 literate matched controls on a verbal and a visuospatial version of the Hebb paradigm, measuring both short- and long-term serial-order memory abilities. We observed better short-term serial-recall performance for the literate compared with the illiterate people. This effect was stronger in the verbal than in the visuospatial modality, suggesting that the improved capacity of the literate group is a consequence of learning orthographic skills. The long-term consolidation of ordered information was comparable across groups, for both stimulus modalities. The implications of these findings for current views regarding the bi-directional interactions between memory and written language development are discussed.Peer reviewe
Ethnic Identity, Acculturation, Parenting Beliefs, and Adolescent Adjustment: A Comparison of Asian Indian and European American Families
Currently, little is known about how child-rearing beliefs change as immigrant families adapt to the host culture and about the extent to which these beliefs begin to approximate the American mainstream. This study examined how parents’ child-rearing beliefs were associated with the psychological well-being of 360 (180 Asian Indian and 180 European American) adolescents. Asian Indian adolescents reported higher family conflict, ethnic identity achievement, and anxiety, and their parents endorsed training and shaming child-rearing beliefs more than did European American families. Asian Indian parents who had an integrated or assimilated acculturation style approximated the European families’ family conflict ratings and their child-rearing beliefs. With exposure to situations that challenge their ways of thinking, immigrant parents develop child-rearing beliefs that allow them to function in both cultures and have positive effects on their adolescent children’s psychological adjustment
The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-bodied Kinematics
There is a major need in the developing world for a low-cost prosthetic knee that enables users to walk with able-bodied kinematics and low energy expenditure. To efficiently design such a knee, the relationship between the inertial properties of a prosthetic leg and joint kinetics and energetics must be determined. In this paper, using inverse dynamics, the theoretical effects of varying the inertial properties of an above-knee prosthesis on the prosthetic knee moment, hip power, and absolute hip work required for walking with ablebodied kinematics were quantified. The effects of independently varying mass and moment of inertia of the prosthesis, as well as independently varying the masses of each prosthesis segment, were also compared. Decreasing prosthesis mass to 25% of physiological leg mass increased peak late-stance knee moment by 43% and decreased peak swing knee moment by 76%. In addition, it reduced peak stance hip power by 26%, average swing hip power by 76%, and absolute hip work by 22%. Decreasing upper leg mass to 25% of its physiological value reduced absolute hip work by just 2%, whereas decreasing lower leg and foot mass reduced work by up to 22%, with foot mass having the greater effect. Results are reported in the form of parametric illustrations that can be utilized by researchers, designers, and prosthetists. The methods and outcomes presented have the potential to improve prosthetic knee component selection, facilitate ablebodied kinematics, and reduce energy expenditure for users of low-cost, passive knees in developing countries, as well as for users of advanced active knees in developed countries.MIT Department of Physics Pappalardo Program (Fellowship)Massachusetts Institute of Technology. Public Service CenterMassachusetts Institute of Technology. Research Support CommitteeNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)MIT Tata Center for Technology and Desig
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments
Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles
Ultrafast pump-probe measurements of plasmonic nanostructures probe the nonequilibrium behavior of excited carriers, which involves several competing effects obscured in typical empirical analyses. Here we present pump-probe measurements of plasmonic nanoparticles along with a complete theoretical description based on first-principles calculations of carrier dynamics and optical response, free of any fitting parameters. We account for detailed electronic-structure effects in the density of states, excited carrier distributions, electron-phonon coupling, and dielectric functions that allow us to avoid effective electron temperature approximations. Using this calculation method, we obtain excellent quantitative agreement with spectral and temporal features in transient-absorption measurements. In both our experiments and calculations, we identify the two major contributions of the initial response with distinct signatures: short-lived highly nonthermal excited carriers and longer-lived thermalizing carriers
Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS.
Reactive astrocytes influence post-injury recovery, repair, and pathogenesis of the mammalian CNS. Much of the regulation of astrocyte reactivity, however, remains to be understood. Using genetic loss and gain-of-function analyses in vivo, we show that the conserved MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) promotes astrocyte reactivity and glial scar formation after CNS injury. Inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activators pSTAT3 and SOX9. The identification of LZK as a critical cell-intrinsic regulator of astrocyte reactivity expands our understanding of the multicellular response to CNS injury and disease, with broad translational implications for neural repair
The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees
Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide gait into energy-based phases and select mechanical components for each phase. The behavior of each component was described with a polynomial function, and the coefficients and polynomial order of each function were optimized to reproduce the knee moments required for normative kinematics of able-bodied humans. Sensitivity of coefficients to prosthesis mass was also investigated. The knee moments required for prosthesis users to walk with able-bodied normative kinematics were accurately reproduced with a mechanical system consisting of a linear spring, two constant-friction dampers, and three clutches (R[superscript 2]=0.90 for a typical prosthetic leg). Alterations in upper leg, lower leg, and foot mass had a large influence on optimal coefficients, changing damping coefficients by up to 180%. Critical results are reported through parametric illustrations that can be used by designers of prostheses to select optimal components for a prosthetic knee based on the inertial properties of the amputee and his or her prosthetic leg
- …
