3,820 research outputs found
Minimization of Handoff Failure Probability for Next-Generation Wireless Systems
During the past few years, advances in mobile communication theory have
enabled the development and deployment of different wireless technologies,
complementary to each other. Hence, their integration can realize a unified
wireless system that has the best features of the individual networks.
Next-Generation Wireless Systems (NGWS) integrate different wireless systems,
each of which is optimized for some specific services and coverage area to
provide ubiquitous communications to the mobile users. In this paper, we
propose to enhance the handoff performance of mobile IP in wireless IP networks
by reducing the false handoff probability in the NGWS handoff management
protocol. Based on the information of false handoff probability, we analyze its
effect on mobile speed and handoff signaling delay.Comment: 16 Page
Type I singularities and the Phantom Menace
We consider the future dynamics of a transient phantom dominated phase of the
universe in LQC and in the RS braneworld, which both have a non-standard
Friedmann equation. We find that for a certain class of potentials, the Hubble
parameter oscillates with simple harmonic motion in the LQC case and therefore
avoids any future singularity. For more general potentials we find that damping
effects eventually lead to the Hubble parameter becoming constant. On the other
hand in the braneworld case we find that although the type I singularity can be
avoided, the scale factor still diverges at late times.Comment: More references added. Final PRD versio
Cosmological evolution of interacting phantom (quintessence) model in Loop Quantum Gravity
The dynamics of interacting dark energy model in loop quantum cosmology (LQC)
is studied in this paper. The dark energy has a constant equation of state
and interacts with dark matter through a form . We
find for quintessence model () the cosmological evolution in LQC is the
same as that in classical Einstein cosmology; whereas for phantom dark energy
(), although there are the same critical points in LQC and classical
Einstein cosmology, loop quantum effect reduces significantly the parameter
spacetime () required by stability. If parameters and satisfy
the conditions that the critical points are existent and stable, the universe
will enter an era dominated by dark energy and dark matter with a constant
energy ratio between them, and accelerate forever; otherwise it will enter an
oscillatory regime. Comparing our results with the observations we find at
confidence level the universe will accelerate forever.Comment: 15 pages, 8 figures, to appear in JCA
Phase transfer of 1- and 2-dimensional Cd-based nanocrystals
In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe–CdS core–crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe–CdS core–crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency).Volkswagen foundation/ZN2916BMBF/NanoMatFutur/03X5525Hannover School for NanotechnologyDFG/DO1580/2-1DFG/DO1580/3-1
Perturbations on steady spherical accretion in Schwarzschild geometry
The stationary background flow in the spherically symmetric infall of a
compressible fluid, coupled to the space-time defined by the static
Schwarzschild metric, has been subjected to linearized perturbations. The
perturbative procedure is based on the continuity condition and it shows that
the coupling of the flow with the geometry of space-time brings about greater
stability for the flow, to the extent that the amplitude of the perturbation,
treated as a standing wave, decays in time, as opposed to the amplitude
remaining constant in the Newtonian limit. In qualitative terms this situation
simulates the effect of a dissipative mechanism in the classical Bondi
accretion flow, defined in the Newtonian construct of space and time. As a
result of this approach it becomes impossible to define an acoustic metric for
a conserved spherically symmetric flow, described within the framework of
Schwarzschild geometry. In keeping with this view, the perturbation, considered
separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur
Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation
We report a method of solving for canonical scalar field exact solution in a
non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger
(NLS)-type formulation in comparison to the method in the standard Friedmann
framework. We consider phantom and non-phantom scalar field cases with
exponential and power-law accelerating expansion. Analysis on effective
equation of state to both cases of expansion is also performed. We speculate
and comment on some advantage and disadvantage of using the NLS formulation in
solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and
Gra
Coupled dark energy: Towards a general description of the dynamics
In dark energy models of scalar-field coupled to a barotropic perfect fluid,
the existence of cosmological scaling solutions restricts the Lagrangian of the
field \vp to p=X g(Xe^{\lambda \vp}), where X=-g^{\mu\nu} \partial_\mu \vp
\partial_\nu \vp /2, is a constant and is an arbitrary function.
We derive general evolution equations in an autonomous form for this Lagrangian
and investigate the stability of fixed points for several different dark energy
models--(i) ordinary (phantom) field, (ii) dilatonic ghost condensate, and
(iii) (phantom) tachyon. We find the existence of scalar-field dominant fixed
points (\Omega_\vp=1) with an accelerated expansion in all models
irrespective of the presence of the coupling between dark energy and dark
matter. These fixed points are always classically stable for a phantom field,
implying that the universe is eventually dominated by the energy density of a
scalar field if phantom is responsible for dark energy. When the equation of
state w_\vp for the field \vp is larger than -1, we find that scaling
solutions are stable if the scalar-field dominant solution is unstable, and
vice versa. Therefore in this case the final attractor is either a scaling
solution with constant \Omega_\vp satisfying 0<\Omega_\vp<1 or a
scalar-field dominant solution with \Omega_\vp=1.Comment: 21 pages, 5 figures; minor clarifications added, typos corrected and
references updated; final version to appear in JCA
Studies on brackish water epiphytic algae from Sundarbans in North 24 Parganas district, West Bengal, India
This study represents the species diversity and ecology of brackish water epiphyticalgae of Sundarbans. Out of 22 taxa, Cyanophyceae represent 50%, Chlorophyceae and Xanthophyceae were 36% and 14%, respectively. These algal taxa were studied in relationto physicochemical characters viz. water temperature, transparency, pH, salinity,phosphate and nitrate. To analyze the data, computerized statistical package was used tocalculate correlation co-efficient between the epiphytic algal distribution andphysicochemical factors. A dendrogram was also constructed to reveal the relationshipsamong different algae on the basis of their diversity in different seasons. Epiphytic algaltaxa showed maximum growth during summer and are more diverse and variable atdifferent stations. These taxa showed a correlation with the habitat
Curvaton Dynamics in Brane-worlds
We study the curvaton dynamics in brane-world cosmologies. Assuming that the
inflaton field survives without decay after the end of inflation, we apply the
curvaton reheating mechanism to Randall-Sundrum and to its curvature
corrections: Gauss-Bonnet, induced gravity and combined Gauss-Bonnet and
induced gravity cosmological models. In the case of chaotic inflation and
requiring suppression of possible short-wavelength generated gravitational
waves, we constraint the parameters of a successful curvaton brane-world
cosmological model. If density perturbations are also generated by the curvaton
field then, the fundamental five-dimensional mass could be much lower than the
Planck massComment: 47 pages, 1 figure, references added, to be published in JCA
- …
