156 research outputs found

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder

    Get PDF
    Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy. Lossos et al. describe a family with an early-onset Pelizaeus-Merzbacher disease-like phenotype that slowly evolves into complicated hereditary spastic paraplegia, affecting both the CNS and PNS. Exome sequencing reveals a causative homozygous missense mutation in MAG, which encodes myelin associated glycoprotei

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    fNIRS reproducibility varies with data quality, analysis pipelines, and researcher experience

    Get PDF
    As data analysis pipelines grow more complex in brain imaging research, understanding how methodological choices affect results is essential for ensuring reproducibility and transparency. This is especially relevant for functional Near-Infrared Spectroscopy (fNIRS), a rapidly growing technique for assessing brain function in naturalistic settings and across the lifespan, yet one that still lacks standardized analysis approaches. In the fNIRS Reproducibility Study Hub (FRESH) initiative, we asked 38 research teams worldwide to independently analyze the same two fNIRS datasets. Despite using different pipelines, nearly 80% of teams agreed on group-level results, particularly when hypotheses were strongly supported by literature. Teams with higher self-reported analysis confidence, which correlated with years of fNIRS experience, showed greater agreement. At the individual level, agreement was lower but improved with better data quality. The main sources of variability were related to how poor-quality data were handled, how responses were modeled, and how statistical analyses were conducted. These findings suggest that while flexible analytical tools are valuable, clearer methodological and reporting standards could greatly enhance reproducibility. By identifying key drivers of variability, this study highlights current challenges and offers direction for improving transparency and reliability in fNIRS research

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Nanoclay Migration and the Rheological Response of PBAT/LDPE Blends

    Full text link
    Abstract Blends of a poly(butylene adipate-co-terephthalate) (PBAT) and a low density polyethylene (LDPE) (80 wt%/20 wt%) were prepared through a twin screw extruder while incorporating 3 wt% Cloisite 30B (C30B) nanoclay that possessed a much higher affinity with PBAT. The blends were processed through three melt mixing strategies: ( i) direct mixing of all three components, (ii) mixing C30B and PBAT followed by mixing with LDPE, and (iii) mixing C30B and LDPE followed by mixing with PBAT. The rheological properties of each system were determined in small amplitude oscillatory shear (SAOS) experiments. The migration of C30B nanoparticles from the LDPE minor phase towards the PBAT matrix was then monitored in the blend nanocomposites prepared through strategy (iii) via SAOS time sweep experiments. It was firstly understood that the C30B migration could be detected during time sweep SAOS experiments. The migration time was observed to be frequency dependent due to the smaller length scales probed at larger frequencies. Such migration occurred even faster when the SAOS time sweep experiments were conducted at a higher temperature due to the viscosity reduction.</jats:p
    corecore