874 research outputs found
Standard Model False Vacuum Inflation: Correlating the Tensor-to-Scalar Ratio to the Top Quark and Higgs Boson masses
For a narrow band of values of the top quark and Higgs boson masses, the
Standard Model Higgs potential develops a false minimum at energies of about
GeV, where primordial Inflation could have started in a cold
metastable state. A graceful exit to a radiation-dominated era is provided,
e.g., by scalar-tensor gravity models. We pointed out that if Inflation
happened in this false minimum, the Higgs boson mass has to be in the range
GeV, where ATLAS and CMS subsequently reported excesses of
events. Here we show that for these values of the Higgs boson mass, the
inflationary gravitational wave background has be discovered with a
tensor-to-scalar ratio at hand of future experiments. We suggest that combining
cosmological observations with measurements of the top quark and Higgs boson
masses represents a further test of the hypothesis that the Standard Model
false minimum was the source of Inflation in the Universe.Comment: v1: 4 pages, 2 figures; v2: 5 pages, 2 figures, improvements in the
text; v3: 5 pages, 2 figures, minor improvements in the text, matches PRL
versio
Empowering formative assessment using embedded Web Widgets in Wikis
The article can be viewed at: http://opensym.org/wsos2013/proceedings/p0901-notari.pdfIn this article we describe how we developed and how we use a tool for teachers enhancing inter-group collaboration of learners using wikis in project-based learning settings with over 100 participants, where different groups of students develop similar projects and each project has an own wiki page. To achieve our goal we extended typical wiki functionality by using web widgets, mini applications embedded anywhere in the wiki environment using the iframe tag.
Two different evaluation widgets (rating widget and 'working progress' widget) are placed on each of the project pages. The project groups use the 'working progress' widget to declare the amount of work done. The teacher and the rest of the learning community use the 'rating' widget to rate the ongoing project work. A so called 'meta widget' showing a summary of the results of the 'rating' and 'working progress' widget can be displayed on the start page of the learning community or if a project is divided in different milestones, on the page describing the goals and timeline for the milestone. Evaluation widgets and meta widget, which easily can be embedded by the teacher potentially all over the wiki pages, enhances visibility of quality and termination degree of a project and enhance so the self, the tutor and the peer review opportunities in such large scale project based learning settings. The created evaluation widgets and meta widgets have been embedded in the wiki of a three months curriculum. The evaluation of utility and usability of the widgets is ongoing. The educational value of rating and reflecting about the working progress of a given task is discussed
Development of a glass-ceramic glaze formulated from industrial residues to improve the mechanical properties of the porcelain stoneware tiles
In this research a mixture of 90%wt of industrial residues (recycled soda-lime glass and ashes from a coalpower thermal plant) have been vitrified for their use as ‘‘secondary raw material”. Then, a glaze suspen-sion was prepared to be applied on the porcelain stoneware tile. The tested pieces have been fired by aconventional porcelain cycle at 1180 °C of maximum temperature. The XRD, XRF, SEM/EDS and thedilatometric analysis have been the instrumental techniques used to characterize the material. Finally,an ecological glass-ceramic glaze perfectly fitting on porcelain ceramic tile has been produced, exhibitinga unique phase, anorthite, which ensures a high flexural strength (around 96 MPa) and a significantVickers microhardness of 250 GPa, improving the mechanical properties of a conventional the porcelainceramic tile
"Swiss-Cheese" Inhomogeneous Cosmology & the Dark Energy Problem
We study an exact swiss-cheese model of the Universe, where inhomogeneous LTB
patches are embedded in a flat FLRW background, in order to see how
observations of distant sources are affected. We find negligible integrated
effect, suppressed by (L/R_{H})^3 (where L is the size of one patch, and R_{H}
is the Hubble radius), both perturbatively and non-perturbatively. We
disentangle this effect from the Doppler term (which is much larger and has
been used recently \cite{BMN} to try to fit the SN curve without dark energy)
by making contact with cosmological perturbation theory.Comment: 35 pages, 6 figure
Detecting the Cold Spot as a Void with the Non-Diagonal Two-Point Function
The anomaly in the Cosmic Microwave Background known as the "Cold Spot" could
be due to the existence of an anomalously large spherical (few hundreds Mpc/h
radius) underdense region, called a "Void" for short. Such a structure would
have an impact on the CMB also at high multipoles l through Lensing. This would
then represent a unique signature of a Void. Modeling such an underdensity with
an LTB metric, we show that the Lensing effect leads to a large signal in the
non-diagonal two-point function, centered in the direction of the Cold Spot,
such that the Planck satellite will be able to confirm or rule out the Void
explanation for the Cold Spot, for any Void radius with a Signal-to-Noise ratio
of at least O(10).Comment: v1: 6 pages, 2 figures; v2: 6 pages, 2 figures, text improved, to
appear on JCA
Gradient expansion(s) and dark energy
Motivated by recent claims stating that the acceleration of the present
Universe is due to fluctuations with wavelength larger than the Hubble radius,
we present a general analysis of various perturbative solutions of fully
inhomogeneous Einstein equations supplemented by a perfect fluid. The
equivalence of formally different gradient expansions is demonstrated. If the
barotropic index vanishes, the deceleration parameter is always positive
semi-definite.Comment: 17 pages, no figure
Cosmological Backreaction from Perturbations
We reformulate the averaged Einstein equations in a form suitable for use
with Newtonian gauge linear perturbation theory and track the size of the
modifications to standard Robertson-Walker evolution on the largest scales as a
function of redshift for both Einstein de-Sitter and Lambda CDM cosmologies. In
both cases the effective energy density arising from linear perturbations is of
the order of 10^-5 the matter density, as would be expected, with an effective
equation of state w ~ -1/19. Employing a modified Halofit code to extend our
results to quasilinear scales, we find that, while larger, the deviations from
Robertson-Walker behaviour remain of the order of 10^-5.Comment: 15 pages, 8 figures; replaced by version accepted by JCA
Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae
It is now a known fact that if we happen to be living in the middle of a
large underdense region, then we will observe an "apparent acceleration", even
when any form of dark energy is absent. In this paper, we present a "Minimal
Void" scenario, i.e. a "void" with minimal underdensity contrast (of about
-0.4) and radius (~ 200-250 Mpc/h) that can, not only explain the supernovae
data, but also be consistent with the 3-yr WMAP data. We also discuss
consistency of our model with various other measurements such as Big Bang
Nucleosynthesis, Baryon Acoustic Oscillations and local measurements of the
Hubble parameter, and also point out possible observable signatures.Comment: Minor numerical errors and typos corrected, references adde
Cosmic Acceleration Driven by Mirage Inhomogeneities
A cosmological model based on an inhomogeneous D3-brane moving in an AdS_5 X
S_5 bulk is introduced. Although there is no special points in the bulk, the
brane Universe has a center and is isotropic around it. The model has an
accelerating expansion and its effective cosmological constant is inversely
proportional to the distance from the center, giving a possible geometrical
origin for the smallness of a present-day cosmological constant. Besides, if
our model is considered as an alternative of early time acceleration, it is
shown that the early stage accelerating phase ends in a dust dominated FRW
homogeneous Universe. Mirage-driven acceleration thus provides a dark matter
component for the brane Universe final state. We finally show that the model
fulfills the current constraints on inhomogeneities.Comment: 14 pages, 1 figure, IOP style. v2, changed style, minor corrections,
references added, version accepted in Class. Quant. Gra
- …
