4,183 research outputs found

    CP-odd Neutral Higgs Effects in Top -- anti-Top Production

    Full text link
    We study CPCP violation in the process e+ettˉννˉe^+e^- \to t\bar{t} \nu\bar{\nu} at an e+ee^+e^--TeV collider. As the source of CPCP violation we assume a two-Higgs doublet model with an explicitly CPCP-noninvariant Higgs potential. Sizeable CPCP-odd observables originating from the subprocess reaction, W+WttˉW^+W^- \to t\bar{t}, may arise as a result of finite width effects of the neutral Higgs particles. CPTCPT constraints due to final (initial) state interactions are also taken into account. Numerical estimates of the CPCP asymmetry are given.Comment: 28 pages(2 Figs not included), LaTeX, MZ-TH/92-5

    From Global to Local Dynamics: Effects of the Expansion on Astrophysical Structures

    Full text link
    We explore the effects of background cosmology on large scale structures with non-spherical symmetry by using the concept of quasi-equilibrium which allows certain internal properties (e.g. angular velocity) of the bodies to change with time. In accordance with the discovery of the accelerated phase of the universe we model the cosmological background by two representative models: the Λ\LambdaCDM Model and the Chaplygin Gas Model. We compare the effects of the two models on various properties of large astrophysical objects. Different equations of state are also invoked in the investigation.Comment: References added To be published in CQ

    Velocity and velocity bounds in static spherically symmetric metrics

    Full text link
    We find simple expressions for velocity of massless particles in dependence of the distance rr in Schwarzschild coordinates. For massive particles these expressions put an upper bound for the velocity. Our results apply to static spherically symmetric metrics. We use these results to calculate the velocity for different cases: Schwarzschild, Schwarzschild-de Sitter and Reissner-Nordstr\"om with and without the cosmological constant. We emphasize the differences between the behavior of the velocity in the different metrics and find that in cases with naked singularity there exists always a region where the massless particle moves with a velocity bigger than the velocity of light in vacuum. In the case of Reissner-Nordstr\"om-de Sitter we completely characterize the radial velocity and the metric in an algebraic way. We contrast the case of classical naked singularities with naked singularities emerging from metric inspired by noncommutative geometry where the radial velocity never exceeds one. Furthermore, we solve the Einstein equations for a constant and polytropic density profile and calculate the radial velocity of a photon moving in spaces with interior metric. The polytropic case of radial velocity displays an unexpected variation bounded by a local minimum and maximum.Comment: 20 pages, 5 figure

    Maximal extension of the Schwarzschild spacetime inspired by noncommutative geometry

    Full text link
    We derive a transformation of the noncommutative geometry inspired Schwarzschild solution into new coordinates such that the apparent unphysical singularities of the metric are removed. Moreover, we give the maximal singularity-free atlas for the manifold with the metric under consideration. This atlas reveals many new features e.g. it turns out to describe an infinite lattice of asymptotically flat universes connected by black hole tunnels.Comment: 17 pages LaTex, 2 figure

    Quantum mechanics of a constrained electrically charged particle in the presence of electric currents

    Get PDF
    We discuss the dynamics of a classical spinless quantum particle carrying electric charge and constrained to move on a non singular static surface in ordinary three dimensional space in the presence of arbitrary configurations of time independent electric currents. Starting from the canonical action in the embedding space we show that a charged particle with charge qq couples to a term linear in qA3MqA^3M, where A3A^3 is the transverse component of the electromagnetic vector potential and MM is the mean curvature in the surface. This term cancels exactly a curvature contribution to the orbital magnetic moment of the particle. It is shown that particles, independently of the value of the charge, in addition to the known couplings to the geometry also couple to the mean curvature in the surface when a Neumann type of constraint is applied on the transverse fluctuations of the wave function. In contrast to a Dirrichlet constraint on the transverse fluctuations a Neumann type of constraint on these degrees of freedom will in general make the equations of motion non separable. The exceptions are the equations of motion for electrically neutral particles on surfaces with constant mean curvature. In the presence of electric currents the equation of motion of a charged particle is generally non separable independently of the coupling to the geometry and the boundary constraints.Comment: to appear in Phys.Rev.

    Extraction of the proton charge radius from experiments

    Get PDF
    Static properties of hadrons such as their radii and other moments of the electric and magnetic distributions can only be extracted using theoretical methods and not directly measured from experiments. As a result, discrepancies between the extracted values from different precision measurements can exist. The proton charge radius, rpr_p, which is either extracted from electron proton elastic scattering data or from hydrogen atom spectroscopy seems to be no exception. The value rp=0.84087(39)r_p = 0.84087(39) fm extracted from muonic hydrogen spectroscopy is about 4% smaller than that obtained from electron proton scattering or standard hydrogen spectroscopy. The resolution of this so called proton radius puzzle has been attempted in many different ways over the past six years. The present article reviews these attempts with a focus on the methods of extracting the radius.Comment: Mini review, 14 pages, 1 figur

    γγ\gamma \gamma Processes at High Energy pp Colliders

    Get PDF
    In this note we investigate the production of charged heavy particles via \gaga\ fusion at high energy pp colliders. We revise previous claims that the \gaga\ cross section is comparable to or larger than that for the corresponding Drell-Yan process at high energies. Indeed we find that the \gaga\ contribution to the total production cross section at pp is far below the Drell-Yan cross section. As far as the individual elastic, semi-elastic and inelastic contributions to the \gaga\ process are concerned we find that they are all of the same order of magnitude.Comment: REVTEX, 12 pages, two uuencoded figures appended at the end of the fil
    corecore