392 research outputs found
Will Organic Synthesis Within Icy Grains or on Dust Surfaces in the Primitive Solar Nebula Completely Erase the Effects of Photochemical Self Shielding?
There are at least 3 separate photochemical self-shielding models with different degrees of commonality. All of these models rely on the selective absorption of (12))C(16)O dissociative photons as the radiation source penetrates through the gas allowing the production of reactive O-17 and O-18 atoms within a specific volume. Each model also assumes that the undissociated C(16)O is stable and does not participate in the chemistry of nebular dust grains. In what follows we will argue that this last, very important assumption is simply not true despite the very high energy of the CO molecular bond
Recommended from our members
Did organic compounds in the Tagish Lake meteorite form via catalytic processes in the solar nebula and within parent bodies?
A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae
The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts
Recommended from our members
Production of high molecular weight organic compounds on the surfaces of amorphous iron silicate catalysts: Implications for organic synthesis in the solar nebula
The high molecular weight organic products of Fischer-Tropsch/Haber-Bosch syntheses on the surfaces of Fe-silicate catalysts have been studied by GCMS
Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions
Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult
Production of Organic Grain Coatings by Surface-Mediated Reactions and the Consequences of This Process for Meteoritic Constituents
When hydrogen, nitrogen and CO are exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions. Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these reactions. The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic material. Many more experiments are needed to understand this chemical system and its application to protostellar nebulae
A Simple Mechanism for Fractionating Oxygen Isotopes in the Solar Nebula
Lightning in the Solar Nebula is caused by the tribo-electric charging of dust grains carried by massive turbulent flows and driven by the accretion energy in the disk: it has long been one agent assumed responsible for the formation of chondrules. The degree to which charge separation can occur is dependent upon a number of factors, including the concentration of radioactive sources and the total level of ionization in the nebula, and these factors determine the maximum energy likely to be released by a single bolt. While chondrule formation requires a massive discharge, even a small lightning bolt can vaporize grains in the ionized discharge channel. Experimental studies have shown that silica, iron silicate and iron oxide grains formed from a high voltage discharge in hydrogen rich gas containing some oxygen produces solids that are enriched in O-17 and O-18 relative to the composition of the starting gas. Vaporization of silicates produces SiO, metal and free oxygen atoms in each discharge and these species will immediately begin to recondense from the hot plasma. Freshly condensed grains are incrementally enriched in heavy oxygen while the gas is enriched in O-16. Repeated evaporation and condensation of silicates in continuously occurring lightning discharges will monotonically increase the fractionation of oxygen isotopes between the O-17 and O-18 rich dust and the O-16 rich gas. The first mass independently fractionated refractory oxide particles were produced in the lab following the condensation of a flowing gas mixture containing variable amounts of hydrogen, silane, pentacarbonyl iron and oxygen that passed through a high voltage discharge powered by a Tesla coil. While the exact chemical pathway is still uncertain, the most probable reaction mechanisms involve oxidation of the growing refractory clusters by O3, OH or O atoms. This model has some interesting consequences for chemical processes in the early solar nebula. Chemical fractionation of recondensed dust evaporated via lightning discharges should be strongly time dependent. At earlier times, the accretion rate is maximal, thus driving strong turbulence, energetic grain-grain collisions, tribo-electric charging and charge separation, leading to frequent, powerful lightning discharges. As the accretion rate diminishes, turbulence decreases and lightning discharges will become both less powerful and less frequent, thus decreasing the rate of dust-gas fractionation. The most rapid increase in the formation of O-16 poor dust will occur early in nebular history. Generation of fractionated dust should be distributed throughout the inner disk. Once condensed, grain dispersal would average out any significant isotopic anomalies within the inner disk
Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae
More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert relatively inert carbonaceous dust from the ISM into the vital organic precursors to life such as amino acids and sugars intimately mixed with dust and ice in primitive planetesimals. Since the number of carbon atoms entering the Solar Nebula as dust exceeds the number of atoms entering the nebula as oxide grains. the formation of large quantities of complex organic molecules may represent the largest single chemical cycle in the nebula
Complex Protostellar Chemistry
Two decades ago, our understanding chemistry in protostars was simple -- matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger-scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets. This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula. Our understanding of the chemistry in protostellar systems has made enormous progress over the last few decades, fueled by an increased awareness of the complex dynamics of these evolving energetic nebulae. We can no longer consider just the simple local environment to explain the composition of a planet, asteroid, or comet as was done in the past, but must now consider chemical processes that might take place within the nebula as a whole as well as the probability of transport and mixing the products of such reactions throughout the system. just as we now find it impossible to explain the complex chemistry of the terrestrial atmosphere without reference to detailed transport models that interconnect highly dissimilar chemical environments, so chemical models of protostars and of the solar nebula must eventually treat these environments as tightly coupled, interactive systems. The demonstration that the chemistry on the surfaces of outward-flowing, dynamically mixing icy grain surfaces both mimics the chemistry in cold cloud cores and strikes at the central assumption of the photochemical self-shielding model for oxygen isotopes in solar system solids only adds emphasis to this conclusion
A Quantitative, Time-Dependent Model of Oxygen Isotopes in the Solar Nebula: Step one
The remarkable discovery that oxygen isotopes in primitive meteorites were fractionated along a line of slope I rather than along the typical slope 0,52 terrestrial fractionation line occurred almost 40 years ago, However, a satisfactory, quantitative explanation for this observation has yet to be found, though many different explanations have been proposed, The first of these explanations proposed that the observed line represented the final product produced by mixing molecular cloud dust with a nucleosynthetic component, rich in O-16, possibly resulting from a nearby supernova explosion, Donald Clayton suggested that Galactic Chemical Evolution would gradually change the oxygen isotopic composition of the interstellar grain population by steadily producing O-16 in supernovae, then producing the heavier isotopes as secondary products in lower mass stars, Thiemens and collaborators proposed a chemical mechanism that relied on the availability of additional active rotational and vibrational states in otherwise-symmetric molecules, such as CO2, O3 or SiO2, containing two different oxygen isotopes and a second, photochemical process that suggested that differential photochemical dissociation processes could fractionate oxygen , This second line of research has been pursued by several groups, though none of the current models is quantitative
- …
