1,298 research outputs found
Non-resonant direct p- and d-wave neutron capture by 12C
Discrete gamma-rays from the neutron capture state of 13C to its low-lying
bound states have been measured using pulsed neutrons at En = 550 keV. The
partial capture cross sections have been determined to be 1.7+/-0.5,
24.2+/-1.0, 2.0+/-0.4 and 1.0+/-0.4 microb for the ground (1/2-), first (1/2+),
second (3/2-) and third (5/2+) excited states, respectively. From a comparison
with theoretical predictions based on the non-resonant direct radiative capture
mechanism, we could determine the spectroscopic factor for the 1/2+ state to be
0.80 +/- 0.04, free from neutron-nucleus interaction ambiguities in the
continuum. In addition we have detected the contribution of the non-resonant
d-wave capture component in the partial cross sections for transitions leading
to the 1/2- and 3/2- states. While the s-wave capture dominates at En < 100
keV, the d-wave component turns out to be very important at higher energies.
From the present investigation the 12C(n,gamma)13C reaction rate is obtained
for temperatures in the range 10E+7 - 10E+10 K.Comment: Accepted for publication in Phys. Rev. C. - 16 pages + 8 figure
Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos
Several possible background sources determine the detectability of pep and
CNO solar neutrinos in organic liquid scintillator detectors. Among such
sources, the cosmogenic 11C nuclide plays a central role. 11C is produced
underground in reactions induced by the residual cosmic muon flux. Experimental
data available for the effective cross section for 11C by muons indicate that
11C will be the dominant source of background for the observation of pep and
CNO neutrinos. 11C decays are expected to total a rate 2.5 (20) times higher
than the combined rate of pep and CNO neutrinos in Borexino (KamLAND) in the
energy window preferred for the pep measurement, between 0.8 and 1.3 MeV.
This study examines the production mechanism of 11C by muon-induced showers
in organic liquid scintillators with a novel approach: for the first time, we
perform a detailed ab initio calculation of the production of a cosmogenic
nuclide, 11C, taking into consideration all relevant production channels.
Results of the calculation are compared with the effective cross sections
measured by target experiments in muon beams.
This paper also discusses a technique for reduction of background from 11C in
organic liquid scintillator detectors, which allows to identify on a one-by-one
basis and remove from the data set a large fraction of 11C decays. The
background reduction technique hinges on an idea proposed by Martin Deutsch,
who suggested that a neutron must be ejected in every interaction producing a
11C nuclide from 12C. 11C events are tagged by a three-fold coincidence with
the parent muon track and the subsequent neutron capture on protons.Comment: 11 pages, 6 figures; added one section detailing comparison with
previous estimates; added reference
Assessment of the Al–Fe–Ti system
The Al–Fe–Ti system has been assessed and the limiting binary systems are shortly reviewed. Based on a thorough review of the literature, isotherms at 800, 900, and 1000 °C have been re-evaluated and a provisional isotherm at 1200 °C is presented for the first time. The effect of alloying the binary phases with the third component is reviewed with regard to the ternary homogeneity ranges, crystallography, order/disorder transformations, and site occupancies. Of the variously reported ternary compounds only the existence of “Al2FeTi” (τ2) and “Al8FeTi3” (τ3) is confirmed. The occurrence of the phases τ2*, τ′2, and of a new stacking variant of TiAl is still under discussion, while the existence of the phases Fe2AlTi (τ1) and Fe25Al69Ti6 (X) is ruled out. The presented reaction scheme corroborates the isothermal sections and also a representation of the liquidus surface is given. Magnetic, electrical, thermochemical, atomistic and diffusion data for Al–Fe–Ti alloys are summarised and an overview about studies on modelling of phase equilibria and phase transformations is given
Spectroscopic factors for bound s-wave states derived from neutron scattering lengths
A simple and model-independent method is described to derive neutron
single-particle spectroscopic factors of bound s-wave states in nuclei from neutron scattering lengths. Spectroscopic factors
for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and
^{41}Ar are compared to results derived from transfer experiments using the
well-known DWBA analysis and to shell model calculations. The scattering length
of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC,
uuencoded tex-files and postscript-files available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u
Normal levels of p27Xic1 are necessary for somite segmentation and determining pronephric organ size
The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using over-expression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues
The Influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys
Grain refinement is known to be strongly affected by the solute in cast alloys. Addition of some solute can reduce grain size considerably while others have a limited effect. This is usually attributed to the constitutional supercooling which is quantified by the growth restriction factor, Q. However, one factor that has not been considered is whether different solutes have differing effects on the thermodynamic driving force for solidification. This paper reveals that addition of solute reduces the driving force for solidification for a given undercooling, and that for a particular Q value, it is reduced more substantially when adding eutectic-forming solutes than peritectic-forming elements. Therefore, compared with the eutectic-forming solutes, addition of peritectic-forming solutes into Al alloys not only possesses a higher initial nucleation rate resulted from the larger thermodynamic driving force for solidification, but also promotes nucleation within the constitutionally supercooled zone during growth. As subsequent nucleation can occur at smaller constitutional supercoolings for peritectic-forming elements, a smaller grain size is thus produced. The very small constitutional supercooling required to trigger subsequent nucleation in alloys containing Ti is considered as a major contributor to its extraordinary grain refining efficiency in cast Al alloys even without the deliberate addition of inoculants.The Australian Research Council (ARC DP10955737)
- …
