353 research outputs found
Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration
To clarify a key role of orbitals in the emergence of
antiferro-quadrupole structure in PrPb, we investigate the ground-state
property of an orbital-degenerate Kondo lattice model by numerical
diagonalization techniques. In PrPb, Pr has a
configuration and the crystalline-electric-field ground state is a non-Kramers
doublet . In a - coupling scheme, the state is
described by two local singlets, each of which consists of two electrons
with one in and another in orbitals. Since in a cubic
structure, has localized nature, while orbitals are
rather itinerant, we propose the orbital-degenerate Kondo lattice model for an
effective Hamiltonian of PrPb. We show that an antiferro-orbital state is
favored by the so-called double-exchange mechanism which is characteristic of
multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30,
2007, Kobe
Observation of Modulated Quadrupolar Structures in PrPb3
Neutron diffraction measurements have been performed on the cubic compound
PrPb3 in a [001] magnetic field to examine the quadrupolar ordering.
Antiferromagnetic components with q=(1/2+-d 1/2 0), (1/2 1/2+-d 0) (d~1/8) are
observed below the transition temperature TQ (0.4 K at H=0) whose amplitudes
vary linear with H and vanish at zero field, providing the first evidence for a
modulated quadrupolar phase. For H<1 T, a non-square modulated state persists
even below 100 mK suggesting quadrupole moments associated with a Gamma3
doublet ground state to be partially quenched by hybridization with conduction
electrons.Comment: Physical Review Letters, in press. 4 pages, 4 figure
Neutron scattering study of magnetic ordering and excitations in the ternary rare-earth diborocarbide Ce^{11}B_2C_2
Neutron scattering experiments have been performed on the ternary rare-earth
diborocarbide CeBC. The powder diffraction experiment confirms
formation of a long-range magnetic order at K, where a
sinusoidally modulated structure is realized with the modulation vector . Inelastic excitation spectra in the
paramagnetic phase comprise significantly broad quasielastic and inelastic
peaks centered at and 65 meV.
Crystalline-electric-field (CEF) analysis satisfactorily reproduces the
observed spectra, confirming their CEF origin. The broadness of the
quasielastic peak indicates strong spin fluctuations due to coupling between
localized spins and conduction electrons in the paramagnetic phase. A
prominent feature is suppression of the quasielastic fluctuations, and
concomitant growth of a sharp inelastic peak in a low energy region below
. This suggests dissociation of the conduction and localized
electrons on ordering, and contrasts the presently observed incommensurate
phase with spin-density-wave order frequently seen in heavy fermion compounds,
such as Ce(RuLa)Si.Comment: accepted for publication in Phys. Rev.
Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTiAl
The cubic compound PrTiAl is a quadrupolar Kondo lattice system
that exhibits quadrupolar ordering due to the non-Kramers ground
doublet and has strong hybridization between and conduction electrons. Our
study using high-purity single crystal reveals that PrTiAl exhibits
type-II superconductivity at mK in the nonmagnetic
ferroquadrupolar state. The superconducting critical temperature and field
phase diagram suggests moderately enhanced effective mass of
Itinerant-Electron Magnet of the Pyrochlore Lattice: Indium-Doped YMn2Zn20
We report on a ternary intermetallic compound, "YMn2Zn20", comprising a
pyrochlore lattice made of Mn atoms. A series of In-doped single crystals
undergo no magnetic long-range order down to 0.4 K, in spite of the fact that
the Mn atom carries a local magnetic moment at high temperatures, showing
Curie-Weiss magnetism. However, In-rich crystals exhibit spin-glass transitions
at approximately 10 K due to a disorder arising from the substitution, while,
with decreasing In content, the spin-glass transition temperature is reduced to
1 K. Then, heat capacity divided by temperature approaches a large value of 280
mJ K-2 mol-1, suggesting a significantly large mass enhancement for conduction
electrons. This heavy-fermion-like behavior is not induced by the Kondo effect
as in ordinary f-electron compounds, but by an alternative mechanism related to
the geometrical frustration on the pyrochlore lattice, as in (Y,Sc)Mn2 and
LiV2O4, which may allow spin entropy to survive down to low temperatures and to
couple with conduction electrons.Comment: 5 pages, 4 figures, J. Phys. Soc. Jpn., in pres
Magnetic Phase Diagrams with Possible Field-induced Antiferroquadrupolar Order in TbBC
Magnetic phase diagrams of a tetragonal antiferromagnet TbBC were
clarified by temperature and field dependence of magnetization. It is
noticeable that the N{\'e}el temperature in TbBC is anomalously
enhanced with magnetic fields, in particular the enhancement reaches 13.5 K for
the direction at 10 T. The magnetization processes as well as the
phase diagrams are well interpreted assuming that there appear field-induced
antiferroquadrupolar ordered phases in TbBC. The phase diagrams of the
AFQ compounds in RBC are systematically understood in terms of the
competition with AFQ and AFM interactions.Comment: 4 pages, 4 figures, RevTeX
Effects of Impurities with Singlet-Triplet Configuration on Multiband Superconductors
Roles of multipole degrees of freedom in multiband superconductors are
investigated in a case of impurities whose low-lying states consist of singlet
ground and triplet excited states, which is related to the experimental fact
that the transition temperature is increased by Pr substitution for
La in LaOsSb. The most important contribution to the
increase comes from the inelastic interband scattering of electrons coupled to
quadrupole or octupole moments of impurities. It is found that a magnetic field
modifies an effective pairing interaction and the scattering anisotropy appears
in the field-orientation dependence of the upper critical field
in the vicinity of , although a uniaxial anisotropic field is
required for experimental detection. This would be proof that the Pr internal
degrees of freedom are relevant to the stability of superconductivity in
(LaPr)OsSb.Comment: 10 pages, 5 figures, to appear in J. Phys. Soc. Jp
Predictors of Radiotherapy Induced Bone Injury (RIBI) after stereotactic lung radiotherapy
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to identify clinical and dosimetric factors associated with radiotherapy induced bone injury (RIBI) following stereotactic lung radiotherapy.</p> <p>Methods</p> <p>Inoperable patients with early stage non-small cell lung cancer, treated with SBRT, who received 54 or 60 Gy in 3 fractions, and had a minimum of 6 months follow up were reviewed. Archived treatment plans were retrieved, ribs delineated individually and treatment plans re-computed using heterogeneity correction. Clinical and dosimetric factors were evaluated for their association with rib fracture using logistic regression analysis; a dose-event curve and nomogram were created.</p> <p>Results</p> <p>46 consecutive patients treated between Oct 2004 and Dec 2008 with median follow-up 25 months (m) (range 6 – 51 m) were eligible. 41 fractured ribs were detected in 17 patients; median time to fracture was 21 m (range 7 – 40 m). The mean maximum point dose in non-fractured ribs (n = 1054) was 10.5 Gy ± 10.2 Gy, this was higher in fractured ribs (n = 41) 48.5 Gy ± 24.3 Gy (p < 0.0001). On univariate analysis, age, dose to 0.5 cc of the ribs (D<sub>0.5</sub>), and the volume of the rib receiving at least 25 Gy (V<sub>25</sub>), were significantly associated with RIBI. As D<sub>0.5</sub> and V<sub>25</sub> were cross-correlated (Spearman correlation coefficient: 0.57, p < 0.001), we selected D<sub>0.5</sub> as a representative dose parameter. On multivariate analysis, age (odds ratio: 1.121, 95% CI: 1.04 – 1.21, p = 0.003), female gender (odds ratio: 4.43, 95% CI: 1.68 – 11.68, p = 0.003), and rib D<sub>0.5</sub> (odds ratio: 1.0009, 95% CI: 1.0007 – 1.001, p < 0.0001) were significantly associated with rib fracture.</p> <p>Using D<sub>0.5,</sub> a dose-event curve was constructed estimating risk of fracture from dose at the median follow up of 25 months after treatment. In our cohort, a 50% risk of rib fracture was associated with a D<sub>0.5</sub> of 60 Gy.</p> <p>Conclusions</p> <p>Dosimetric and clinical factors contribute to risk of RIBI and both should be included when modeling risk of toxicity. A nomogram is presented using D<sub>0.5</sub>, age, and female gender to estimate risk of RIBI following SBRT. This requires validation.</p
- …
