458 research outputs found
A Systematic Review of the Efficacy of Motivational Interviewing on Occupational Performance
This systematic review aims to review the efficacy of MI to address such performance goals falling within the occupational therapy scope of practice
Forty years of paleoecology in the Galapagos
The Galapagos Islands provided one of the first lowland paleoecological records from the Neotropics. Since the first cores were raised from the islands in 1966, there has been a substantial increase in knowledge of past systems, and development of the science of paleoclimatology. The study of fossil pollen, diatoms, corals and compound-specific isotopes on the Galapagos has contributed to the maturation of this discipline. As research has moved from questions about ice-age conditions and mean states of the Holocene to past frequency of El Niño Southern Oscillation, the resolution of fossil records has shifted from millennial to sub-decadal. Understanding the vulnerability of the Galapagos to climate change will be enhanced by knowledge of past climate change and responses in the islands
Sea surface temperature changes in the southern California borderlands during the last glacial-interglacial cycle
A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal δ18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial
Arctic system on trajectory to new state
The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this “super interglacial” state
Potential climatic transitions with profound impact on Europe
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
A "critical" climatic evaluation of last interglacial (MIS 5e) records from the Norwegian Sea
Sediment cores from the Norwegian Sea were studied to evaluate interglacial climate conditions of the marine isotope stage 5e (MIS 5e). Using planktic forminiferal assemblages as the core method, a detailed picture of the evolution of surface water conditions was derived. According to our age model, a step-like deglaciation of the Saalian ice sheets is noted between ca. 135 and 124.5 Kya, but the deglaciation shows little response with regard to surface ocean warming. From then on, the rapidly increasing abundance of subpolar forminifers, concomitant with decreasing iceberg indicators, provides evidence for the development of interglacial conditions sensu stricto (5e-ss), a period that lasted for about 9 Ky. As interpreted from the foraminiferal records, and supported by the other proxies, this interval of 5e-ss was in two parts: showing an early warm phase, but with a fresher, i.e., lower salinity, water mass, and a subsequent cooling phase that lasted until ca. 118.5 Kya. After this time, the climatic optimum with the most intense advection of Atlantic surface water masses occurred until ca. 116 Kya. A rapid transition with two notable climatic perturbations is observed subsequently during the glacial inception. Overall, the peak warmth of the last interglacial period occurred relatively late after deglaciation, and at no time did it reach the high warmth level of the early Holocene. This finding must be considered when using the last interglacial situation as an analogue model for enhanced meridional transfer of ocean heat to the Arctic, with the prospect of a future warmer climate
Approaches to quantitative reconstruction of woody vegetation in managed woodlands from pollen records
There has been increasing interest in developing quantitative methods for reconstructing the dynamics of cultural landscapes over the last 15 years. This paper adds to this literature by using various approaches to reconstruct the vegetation of two woodlands subject to rotational coppicing (the periodic cutting of broadleaved trees and shrubs for wood products). Pollen deposition at ground level was determined at both sites using ‘Tauber’ traps placed near to the centre of 14 compartments of differing age in the coppice rotation. For the main woody taxa, Relative Pollen Productivity (RPP) estimates were derived using linear regression for pollen influx data and Extended R-value analysis for percentage data. The vegetation around three ponds was reconstructed by applying four methods (inverting the two RPP estimate approaches, the modern analogue technique and correction for pollen productivity using the linear regression estimated RPP values) to pollen data obtained from the uppermost sample of sediment from the ponds. To determine whether these methods gave better estimates of the vegetation composition than the original pollen proportions, the results were compared with the surveyed vegetation around each pond using the Bray–Curtis Index. Linear regression of pollen influx produced RPP values which are comparable with previous European studies, whilst for some taxa the Extended R-value analysis produced estimates which are orders of magnitude different both from values derived from the linear regression and previous work. No single approach performed equally well at reconstructing the vegetation around the ponds, and at two of the three locations the uncorrected pollen proportions were most similar to the surveyed vegetation.We conclude that applying quantitative reconstruction methods to individual small sites is, currently, not likely to be useful in complex cultural landscapes. In the context of coppiced woodland, deficiencies in our understanding of pollen taphonomy and the impact of the practice on pollen production first need to be rectified, and we identify strategies to address this situation
Cognitive and psychological science insights to improve climate change data visualization
Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics
Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images
Traditional farming landscapes in the temperate
zone that have persisted for millennia can be exceptionally species-rich and are therefore key conservation targets. In contrast to Europe’s West, Eastern Europe harbours widespread traditional farming landscapes, but drastic socio-economic and political changes in the twentieth century are likely to have impacted these landscapes profoundly. We reconstructed long-term land-use/cover and biodiversity changes over the last 150 years in a traditional farming landscape of outstanding species diversity in Transylvania. We used the Regional Estimates of Vegetation Abundance from Large Sites model applied to a pollen record from the Transylvanian Plain and a suite of historical and satellite-based maps. We documented widespread changes in the extent and location of grassland and cropland, a loss of wood pastures as well as a gradual increase in forest extent. Land management in the socialist period (1947–1989) led to grassland expansion, but grassland diversity decreased due to intensive production. Land-use intensity has declined since the collapse of socialism in 1989, resulting in widespread cropland abandonment and conversion to grassland. However, these trends may be
temporary due to both ongoing woody encroachment as
well as grassland management intensification in productive areas. Remarkably, only 8% of all grasslands existed throughout the entire time period (1860–2010), highlighting the importance of land-use history when identifying target areas for conservation, given that old-growth grasslands are most valuable in terms of biodiversity. Combining datasets from different disciplines can yield important additional insights into dynamic landscape and biodiversity changes, informing conservation actions to maintain these species-rich landscapes in the longer term
Sea surface temperatures of the western Arabian Sea during the last deglaciation.
In this study we present a sea surface temperature (SST) record from the western Arabian Sea for the last\ud
20,000 years. We produced centennial-scale d18O and Mg/Ca SST time series of core NIOP929 with focus on\ud
the glacial-interglacial transition. The western Arabian Sea is influenced by the seasonal NE and SW monsoon\ud
wind systems. Lowest SSTs occur during the SW monsoon season because of upwelling of cold water, and\ud
highest SSTs can be found in the low-productivity intermonsoon season. The Mg/Ca-based temperature record\ud
reflects the integrated SST of the SW and NE monsoon seasons. The results show a glacial-interglacial SST\ud
difference of 2C, which is corroborated by findings from other Arabian Sea cores. At 19 ka B.P. a yet\ud
undescribed warm event of several hundred years duration is found, which is also reflected in the d18O record. A\ud
second centennial-scale high SST/low d18O event is observed at 17 ka B.P. This event forms the onset of the\ud
stepwise yet persistent trend toward Holocene temperatures. Highest Mg/Ca-derived SSTs in the NIOP929\ud
record occurred between 13 and 10 ka B.P. Interglacial SST is 24C, indicating influence of upwelling. The\ud
onset of Arabian Sea warming occurs when the North Atlantic is experiencing minimum temperatures. The rapid\ud
temperature variations at 19, 17, and 13 ka B.P. are difficult to explain with monsoon changes alone and are\ud
most likely also linked to regional hydrographic changes, such as trade wind induced variations in warm water\ud
advection
- …
