728 research outputs found
Topological effects in ring polymers: A computer simulation study
Unconcatenated, unknotted polymer rings in the melt are subject to strong
interactions with neighboring chains due to the presence of topological
constraints. We study this by computer simulation using the bond-fluctuation
algorithm for chains with up to N=512 statistical segments at a volume fraction
\Phi=0.5 and show that rings in the melt are more compact than gaussian chains.
A careful finite size analysis of the average ring size R \propto N^{\nu}
yields an exponent \nu \approx 0.39 \pm 0.03 in agreement with a Flory-like
argument for the topologica interactions. We show (using the same algorithm)
that the dynamics of molten rings is similar to that of linear chains of the
same mass, confirming recent experimental findings. The diffusion constant
varies effectively as D_{N} \propto N^{-1.22(3) and is slightly higher than
that of corresponding linear chains. For the ring sizes considered (up to 256
statistical segments) we find only one characteristic time scale \tau_{ee}
\propto N^{2.0(2); this is shown by the collapse of several mean-square
displacements and correlation functions onto corresponding master curves.
Because of the shrunken state of the chain, this scaling is not compatible with
simple Rouse motion. It applies for all sizes of ring studied and no sign of a
crossover to any entangled regime is found.Comment: 20 Pages,11 eps figures, Late
Distribution of roots of random real generalized polynomials
The average density of zeros for monic generalized polynomials,
, with real holomorphic and
real Gaussian coefficients is expressed in terms of correlation functions of
the values of the polynomial and its derivative. We obtain compact expressions
for both the regular component (generated by the complex roots) and the
singular one (real roots) of the average density of roots. The density of the
regular component goes to zero in the vicinity of the real axis like
. We present the low and high disorder asymptotic
behaviors. Then we particularize to the large limit of the average density
of complex roots of monic algebraic polynomials of the form with real independent, identically distributed
Gaussian coefficients having zero mean and dispersion . The average density tends to a simple, {\em universal}
function of and in the domain where nearly all the roots are located for
large .Comment: 17 pages, Revtex. To appear in J. Stat. Phys. Uuencoded gz-compresed
tarfile (.66MB) containing 8 Postscript figures is available by e-mail from
[email protected]
Effective competition in telecommunications, rail and energy markets
The markets for network-based products and services pose particular problems with regard to competition. The transition from monopolistic to competitive structures and the issues of infrastructure sharing, dominant players and network externalities have all been subject to intensive debates. Despite liberalisation, deregulation and privatisation - and the quasiautomatic solutions they seemed to present - a number of problems persist. Furthermore, the regulation which was introduced as a remedy for distortions of competition during the period of transition from monopoly to competition has not ended with market liberalisation. Each new generation of network technologies creates new challenges to be addressed by regulators and competition authorities, and each industry presents specific problems. The following article discuss a number of the persisting and new questions concerning competition in selected network-based industries
Evolution favors protein mutational robustness in sufficiently large populations
BACKGROUND: An important question is whether evolution favors properties such
as mutational robustness or evolvability that do not directly benefit any
individual, but can influence the course of future evolution. Functionally
similar proteins can differ substantially in their robustness to mutations and
capacity to evolve new functions, but it has remained unclear whether any of
these differences might be due to evolutionary selection for these properties.
RESULTS: Here we use laboratory experiments to demonstrate that evolution
favors protein mutational robustness if the evolving population is sufficiently
large. We neutrally evolve cytochrome P450 proteins under identical selection
pressures and mutation rates in populations of different sizes, and show that
proteins from the larger and thus more polymorphic population tend towards
higher mutational robustness. Proteins from the larger population also evolve
greater stability, a biophysical property that is known to enhance both
mutational robustness and evolvability. The excess mutational robustness and
stability is well described by existing mathematical theories, and can be
quantitatively related to the way that the proteins occupy their neutral
network.
CONCLUSIONS: Our work is the first experimental demonstration of the general
tendency of evolution to favor mutational robustness and protein stability in
highly polymorphic populations. We suggest that this phenomenon may contribute
to the mutational robustness and evolvability of viruses and bacteria that
exist in large populations
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
A case of a traumatic chyle leak following an acute thoracic spine injury: successful resolution with strict dietary manipulation
<p>Abstract</p> <p>Background</p> <p>Chylothorax is a rare form of pleural effusion that can be associated with both traumatic and non-traumatic causes. Thoracic duct ligation is often the treatment of choice in postsurgical patients; however the optimal treatment of this disease process after traumatic injury remains unclear <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. We present a rare case of a thoracic duct injury secondary to a blunt thoracic spine fracture and subluxation which was successfully treated non-operatively.</p> <p>Case Presentation</p> <p>A 51 year old male presented as a tier one trauma code due to an automobile versus bicycle collision. His examination and radiographic work-up revealed fractures and a subluxation at the third and fourth thoracic spine levels resulting in paraplegia. He also sustained bilateral hemothoraces secondary to multiple rib fractures. Drainage of the left hemothorax led to the diagnosis of a traumatic chylothorax. The thoracic spine fractures were addressed with surgical stabilization and the chylothorax was successfully treated with drainage and dietary manipulation.</p> <p>Conclusions</p> <p>This unusual and complex blunt thoracic duct injury required a multidisciplinary approach. Although the spine injury required surgical fixation, successful resolution of the chyle leak was achieved without surgical intervention.</p
Measurement of XUV-absorption spectra of ZnS radiatively heated foils
Time-resolved absorption of zinc sulfide (ZnS) and aluminum in the XUV-range
has been measured. Thin foils in conditions close to local thermodynamic
equilibrium were heated by radiation from laser-irradiated gold spherical
cavities. Analysis of the aluminum foil radiative hydrodynamic expansion, based
on the detailed atomic calculations of its absorption spectra, showed that the
cavity emitted flux that heated the absorption foils corresponds to a radiation
temperature in the range 55 60 eV. Comparison of the ZnS absorption spectra
with calculations based on a superconfiguration approach identified the
presence of species Zn6+ - Zn8+ and S5+ - S6+. Based on the validation of the
radiative source simulations, experimental spectra were then compared to
calculations performed by post-processing the radiative hydrodynamic
simulations of ZnS. Satisfying agreement is found when temperature gradients
are accounted for
Transcriptomic and metabolic changes in Trichoderma reesei caused by mutation in xylanase regulator 1 (xyr1)
Background: Trichoderma reesei is known for its ability to produce large amounts of extracellular proteins and is one of the most important industrially used filamentous fungus. Xylanase regulator 1 (XYR1) is the master regulator responsible for the activation of cellulase and hemicellulase gene expression under inducing conditions. It has been reported that strains with point mutations in certain areas of xyr1 bypass the need for inducing carbon source, allowing high (hemi)cellulase production even in the presence of glucose. These mutations also change the profile of produced proteins, shifting it more towards xylanase production, and increase the overall protein production in inducing conditions. However, how these mutations alter the metabolism and other cellular processes to cause these changes remains unclear. Results: In this study, we aimed to explore changes caused by a point mutation in xyr1 on transcriptomic and metabolic level to better understand the reasons behind the increased protein production in both repressing glucose and inducing lactose conditions. As expected, the expression of many carbohydrate-active enzyme (CAZy) genes was increased in the xyr1 mutant in both conditions. However, their induction was higher under inducing conditions. The xyr1 mutant strain built more biomass and produced more extracellular proteins during growth on lactose compared to the wild type xyr1 strain. Genes involved in oxidoreductive D-galactose catabolism pathway were upregulated in the xyr1 mutant strain, potentially contributing to the more efficient utilization of lactose. In addition to CAZy genes, clustering and enrichment analysis showed over-representation of mitochondria-related Gene Ontology terms in clusters where gene expression was higher in the xyr1 mutant, indicating that mitochondria play a role in the altered metabolic state associated with the xyr1 mutation. Metabolomics revealed that free tyrosine was more abundant in the xyr1 mutant strain in all measured timepoints, whereas multiple fatty acids were less abundant in the mutant strain on glucose. Conclusions: The results contribute to more in-depth knowledge on T. reesei physiology growing under inducing and repressing carbon sources and gives new insights on the function of the master regulator XYR1. The vast data generated serve as a source for new targets for improved protein production.</p
Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF
M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe
On a Generalization of Zaslavsky's Theorem for Hyperplane Arrangements
We define arrangements of codimension-1 submanifolds in a smooth manifold
which generalize arrangements of hyperplanes. When these submanifolds are
removed the manifold breaks up into regions, each of which is homeomorphic to
an open disc. The aim of this paper is to derive formulas that count the number
of regions formed by such an arrangement. We achieve this aim by generalizing
Zaslavsky's theorem to this setting. We show that this number is determined by
the combinatorics of the intersections of these submanifolds.Comment: version 3: The title had a typo in v2 which is now fixed. Will appear
in Annals of Combinatorics. Version. 2: 19 pages, major revision in terms of
style and language, some results improved, contact information updated, final
versio
- …
