871 research outputs found
Instability and dynamics of two nonlinearly coupled laser beams in a plasma
We investigate the nonlinear interaction between two laser beams in a plasma
in the weakly nonlinear and relativistic regime. The evolution of the laser
beams is governed by two nonlinear Schroedinger equations that are coupled with
the slow plasma density response. We study the growth rates of the Raman
forward and backward scattering instabilities as well of the Brillouin and
self-focusing/modulational instabilities. The nonlinear evolution of the
instabilities is investigated by means of direct simulations of the
time-dependent system of nonlinear equations.Comment: 18 pages, 8 figure
Electrostatic pair creation and recombination in quantum plasmas
The collective production of electron-positron pairs by electrostatic waves
in quantum plasmas is investigated. In particular, a semi-classical governing
set of equation for a self-consistent treatment of pair creation by the
Schwinger mechanism in a quantum plasma is derived.Comment: 4 pages, 3 figures, to appear in JETP Letter
Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system
We announce confirmation of Kepler-418b, one of two proposed planets in this
system. This is the first confirmation of an exoplanet based primarily on the
transit color signature technique. We used the Kepler public data archive
combined with multicolor photometry from the Gran Telescopio de Canarias and
radial velocity follow-up using FIES at the Nordic Optical Telescope for
confirmation. We report a confident detection of a transit color signature that
can only be explained by a compact occulting body, entirely ruling out a
contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing
binary. Those findings are corroborated by our radial velocity measurements,
which put an upper limit of ~1 Mjup on the mass of Kepler-418b. We also report
that the host star is significantly blended, confirming the ~10% light
contamination suspected from the crowding metric in the Kepler light curve
measured by the Kepler team. We report detection of an unresolved light source
that contributes an additional ~40% to the target star, which would not have
been detected without multicolor photometric analysis. The resulting
planet-star radius ratio is 0.110 +/- 0.0025, more than 25% more than the 0.087
measured by Kepler, leading to a radius of 1.20 +/- 0.16 Rjup instead of the
0.94 Rjup measured by the Kepler team. This is the first confirmation of an
exoplanet candidate based primarily on the transit color signature,
demonstrating that this technique is viable from ground for giant planets. It
is particularly useful for planets with long periods such as Kepler-418b, which
tend to have long transit durations. Additionally, multicolor photometric
analysis of transits can reveal unknown stellar neighbors and binary companions
that do not affect the classification of the transiting object but can have a
very significant effect on the perceived planetary radius.Comment: accepted by Astronomy & Astrophysic
Detection of transit timing variations in excess of one hour in the Kepler multi-planet candidate system KOI 806 with the GTC
We report the detection of transit timing variations (TTVs) well in excess of
one hour in the Kepler multi-planet candidate system KOI 806. This system
exhibits transits consistent with three separate planets -- a Super-Earth, a
Jupiter, and a Saturn -- lying very nearly in a 1:2:5 resonance, respectively.
We used the Kepler public data archive and observations with the Gran
Telescopio de Canarias to compile the necessary photometry. For the largest
candidate planet (KOI 806.02) in this system, we detected a large transit
timing variation of -103.56.9 minutes against previously published
ephemeris. We did not obtain a strong detection of a transit color signature
consistent with a planet-sized object; however, we did not detect a color
difference in transit depth, either. The large TTV is consistent with
theoretical predictions that exoplanets in resonance can produce large transit
timing variations, particularly if the orbits are eccentric. The presence of
large TTVs among the bodies in this systems indicates that KOI806 is very
likely to be a planetary system. This is supported by the lack of a strong
color dependence in the transit depth, which would suggest a blended eclipsing
binary.Comment: 9 pages, 4 figures, accepted into A&A Letter
Critical surfaces for general inhomogeneous bond percolation problems
We present a method of general applicability for finding exact or accurate
approximations to bond percolation thresholds for a wide class of lattices. To
every lattice we sytematically associate a polynomial, the root of which in
is the conjectured critical point. The method makes the correct
prediction for every exactly solved problem, and comparison with numerical
results shows that it is very close, but not exact, for many others. We focus
primarily on the Archimedean lattices, in which all vertices are equivalent,
but this restriction is not crucial. Some results we find are kagome:
, , ,
, , :
. The results are generally within of numerical
estimates. For the inhomogeneous checkerboard and bowtie lattices, errors in
the formulas (if they are not exact) are less than .Comment: Submitted to J. Stat. Mec
Kepler423b: a half-Jupiter mass planet transiting a very old solar-like star
We report the spectroscopic confirmation of the Kepler object of interest
KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old
solar-like star every 2.7 days. Our analysis is the first to combine the full
Kepler photometry (quarters 1-17) with high-precision radial velocity
measurements taken with the FIES spectrograph at the Nordic Optical Telescope.
We simultaneously modelled the photometric and spectroscopic data-sets using
Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that
the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits
quarter-to-quarter systematic variations of the transit depth, with a
peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every
four quarters. We attributed these systematics to an incorrect assessment of
the quarterly variation of the crowding metric. The host star KOI-183 is a G4
dwarf with M_\rm{Sun},
R_\rm{Sun}, K, dex, and with
an age of Gyr. The planet KOI-183b has a mass of
M and a radius of
R, yielding a planetary bulk
density of g/cm. The radius of KOI-183b
is consistent with both theoretical models for irradiated coreless giant
planets and expectations based on empirical laws. The inclination of the
stellar spin axis suggests that the system is aligned along the line of sight.
We detected a tentative secondary eclipse of the planet at a 2-
confidence level ( ppm) and found that the
orbit might have a small non-zero eccentricity of .
With a Bond albedo of , KOI-183b is one of the
gas-giant planets with the lowest albedo known so far.Comment: 13 pages, 13 figures, 5 tables. Accepted for publication in A&A.
Planet designation changed from KOI-183b to Kepler-423
Transiting exoplanets from the CoRoT space mission. XV. CoRoT-15b: a brown dwarf transiting companion
We report the discovery by the CoRoT space mission of a transiting brown
dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a
radius of 1.12 +0.30 -0.15 Rjup, a mass of 63.3 +- 4.1 Mjup, and is thus the
second transiting companion lying in the theoretical mass domain of brown
dwarfs. CoRoT-15b is either very young or inflated compared to standard
evolution models, a situation similar to that of M-dwarfs stars orbiting close
to solar-type stars. Spectroscopic constraints and an analysis of the
lightcurve favors a spin period between 2.9 and 3.1 days for the central star,
compatible with a double-synchronisation of the system.Comment: 7 pages, 6 figures, accepted in A&
Bayesian Methods for Exoplanet Science
Exoplanet research is carried out at the limits of the capabilities of
current telescopes and instruments. The studied signals are weak, and often
embedded in complex systematics from instrumental, telluric, and astrophysical
sources. Combining repeated observations of periodic events, simultaneous
observations with multiple telescopes, different observation techniques, and
existing information from theory and prior research can help to disentangle the
systematics from the planetary signals, and offers synergistic advantages over
analysing observations separately. Bayesian inference provides a
self-consistent statistical framework that addresses both the necessity for
complex systematics models, and the need to combine prior information and
heterogeneous observations. This chapter offers a brief introduction to
Bayesian inference in the context of exoplanet research, with focus on time
series analysis, and finishes with an overview of a set of freely available
programming libraries.Comment: Invited revie
- …
