426 research outputs found

    Flavoured soft leptogenesis and natural values of the B term

    Full text link
    We revisit flavour effects in soft leptogenesis relaxing the assumption of universality for the soft supersymmetry breaking terms. We find that with respect to the case in which the heavy sneutrinos decay with equal rates and equal CP asymmetries for all lepton flavours, hierarchical flavour configurations can enhance the efficiency by more than two orders of magnitude. This translates in more than three order of magnitude with respect to the one-flavour approximation. We verify that lepton flavour equilibration effects related to off-diagonal soft slepton masses are ineffective for damping these large enhancements. We show that soft leptogenesis can be successful for unusual values of the relevant parameters, allowing for BO(TeV)B\sim {\cal O}({\rm TeV}) and for values of the washout parameter up to meff/m5×103m_{\rm eff}/m_* \sim 5\times 10^{3}.Comment: 23 pages, 5 figures postscript, Minor changes to match the published version in JHE

    On Quantum Effects in Soft Leptogenesis

    Full text link
    It has been recently shown that quantum Boltzman equations may be relevant for leptogenesis. Quantum effects, which lead to a time-dependent CP asymmetry, have been shown to be particularly important for resonant leptogenesis when the asymmetry is generated by the decay of two nearly degenerate states. In this work we investigate the impact of the use of quantum Boltzman equations in the framework ``soft leptogenesis'' in which supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide the CP-violating phase to generate the lepton asymmetry.Comment: 15 pages, 4 figures. Replacement to match published versio

    Leptonic CP Violation and Neutrino Mass Models

    Full text link
    We discuss leptonic mixing and CP violation at low and high energies, emphasizing possible connections between leptogenesis and CP violation at low energies, in the context of lepton flavour models. Furthermore we analyse weak basis invariants relevant for leptogenesis and for CP violation at low energies. These invariants have the advantage of providing a simple test of the CP properties of any lepton flavour model.Comment: 26 pages, no figures, submitted to the Focus Issue on `Neutrino Physics` edited by F. Halzen, M. Lindner and A. Suzuki, to be published in New Journal of Physic

    Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008

    Get PDF
    The blazar PG 1553+113 is a well known TeV gamma-ray emitter. In this paper, we determine its spectral energy distribution using simultaneous multi-frequency data in order to study its emission processes. An extensive campaign was carried out between March and April 2008, where optical, X-ray, high-energy (HE) gamma-ray, and very-high-energy (VHE) gamma-ray data were obtained with the KVA, Abastumani, REM, RossiXTE/ASM, AGILE and MAGIC telescopes, respectively. This is the first simultaneous broad-band (i.e., HE+VHE) gamma-ray observation, though AGILE did not detect the source. We combine data to derive source's spectral energy distribution and interpret its double peaked shape within the framework of a synchrotron self compton modelComment: 5 pages, 2 figures, publishe

    Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis

    Get PDF
    We systematically investigate constraints on the parameters of the supersymmetric type-I seesaw mechanism from the requirement of successful thermal leptogenesis in the presence of upper bounds on the reheat temperature TRHT_\mathrm{RH} of the early Universe. To this end, we solve the flavour-dependent Boltzmann equations in the MSSM, extended to include reheating. With conservative bounds on TRHT_\mathrm{RH}, leading to mildly constrained scenarios for thermal leptogenesis, compatibility with observation can be obtained for extensive new regions of the parameter space, due to flavour-dependent effects. On the other hand, focusing on (normal) hierarchical light and heavy neutrinos, the hypothesis that there is no CP violation associated with the right-handed neutrino sector, and that leptogenesis exclusively arises from the CP-violating phases of the UMNSU_\text{MNS} matrix, is only marginally consistent. Taking into account stricter bounds on TRHT_\mathrm{RH} further suggests that (additional) sources of CP violation must arise from the right-handed neutrino sector, further implying stronger constraints for the right-handed neutrino parameters.Comment: 42 pages, 12 figures; final version published in JCAP; numerical results for the efficiency factor can be downloaded from http://www.newphysics.eu/leptogenesis

    Joint Power Control and Structural Health Monitoring in Industry 4.0 Scenarios using Eclipse Arrowhead and Web of Things

    Get PDF
    The integration of legacy IoT ecosystems in Industry 4.0 scenarios requires human effort to adapt single devices. This process would highly benefit from features like device lookup, loose coupling and late binding. In this paper, we tackle the issue of integrating legacy monitoring systems and actuation systems in an industrial scenario, by looking into the Web of Things (WoT) as a communication standard and the Eclipse Arrowhead Framework (AHF) as a service orchestrator. More specifically, we propose a general architectural approach to enable closed-loop automation between the above mentioned legacy systems by leveraging the adaptation of the WoT to the AHF. Then, we develop a rule-based engine that enables the control of the actuation based on sensor values. Finally, we present a proof-of-concept use case where we integrate a Structural Health Monitoring (SHM) scenario with a power control actuation subsystem using the developed component

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive

    Measurement of the muon decay spectrum with the ICARUS liquid Argon TPC

    Full text link
    Examples are given which prove the ICARUS detector quality through relevant physics measurements. We study the muon decay energy spectrum from a sample of stopping muon events acquired during the test run of the ICARUS T600 detector. This detector allows the spatial reconstruction of the events with fine granularity, hence, the precise measurement of the range and dE/dx of the muon with high sampling rate. This information is used to compute the calibration factors needed for the full calorimetric reconstruction of the events. The Michel rho parameter is then measured by comparison of the experimental and Monte Carlo simulated muon decay spectra, obtaining rho = 0.72 +/- 0.06(stat.) +/- 0.08(syst.). The energy resolution for electrons below ~50 MeV is finally extracted from the simulated sample, obtaining (Emeas-Emc)/Emc = 11%/sqrt(E[MeV]) + 2%.Comment: 16 pages, 8 figures, LaTex, A4. Some text and 1 figure added. Final version as accepted for publication in The European Physical Journal

    Models of Neutrino Masses and Mixings

    Full text link
    We review theoretical ideas, problems and implications of neutrino masses and mixing angles. We give a general discussion of schemes with three light neutrinos. Several specific examples are analyzed in some detail, particularly those that can be embedded into grand unified theories.Comment: 44 pages, 2 figures, version accepted for publication on the Focus Issue on 'Neutrino Physics' edited by F.Halzen, M.Lindner and A. Suzuki, to be published in New Journal of Physics
    corecore