207 research outputs found
Metabolic tumor volume response assessment using (11)C-methionine positron emission tomography identifies glioblastoma tumor subregions that predict progression better than baseline or anatomic magnetic resonance imaging alone
Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer
<p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing <sup>18</sup>F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection.</p> <p>Methods</p> <p>Two breast cancer patients were evaluated. <sup>18</sup>F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered <sup>18</sup>F-FDG dose.</p> <p>Results</p> <p>One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions.</p> <p>Conclusion</p> <p>Immediate preoperative and postoperative PET/CT imaging, utilizing the same <sup>18</sup>F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and verifying resection of <sup>18</sup>F-FDG positive tumors and may ultimately positively impact upon long-term patient outcomes.</p
Multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic activity in a case of occult recurrent metastatic melanoma
<p>Abstract</p> <p>Background</p> <p>The use of diagnostic <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) imaging for the staging, restaging, and treatment monitoring of melanoma patients has become a well-recognized standard of care. It plays a key role in detecting sites of occult disease and is widely utilized in the medical and surgical planning of such patients. In the current report, we describe an innovative multimodality approach of perioperative <sup>18</sup>F-FDG PET/CT imaging, intraoperative <sup>18</sup>F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic tumor foci in a case of occult recurrent metastatic melanoma.</p> <p>Case presentation</p> <p>This report discusses a case of occult recurrent metastatic melanoma, isolated to three separate sites within the subcutaneous tissues of the left thigh region, which was not clinically apparent but was found on diagnostic restaging whole body <sup>18</sup>F-FDG PET/CT scan utilizing an intravenous injection of 14.8 mCi <sup>18</sup>F-FDG. Then, on the day of surgery, the patient received an intravenous injection of 12.8 mCi <sup>18</sup>F-FDG. A multimodality approach of intraoperative handheld gamma probe detection, intraoperative ultrasound tumor localization, specimen PET/CT imaging, and postoperative PET/CT imaging was utilized for accomplishing and verifying the excision of all three sites of occult recurrent metastatic melanoma within the left thigh region.</p> <p>Conclusion</p> <p>This innovative multimodality approach of perioperative <sup>18</sup>F-FDG PET/CT imaging, intraoperative <sup>18</sup>F-FDG handheld gamma probe detection, and intraoperative ultrasound is promising combined technology for aiding in tumor localization and verification of excision and may ultimately impact positively upon long-term outcome of selected patients.</p
Metabolic development of necrotic bone in the femoral head following resurfacing arthroplasty: A clinical [18F]fluoride-PET study in 11 asymptomatic hips
Background and purpose One concern regarding resurfacing arthroplasty is the viability of the diminished femoral head and the postoperative risk of collapse, or a femoral neck fracture. (18)F-fluoride positron emission tomography (F-PET) enables us to assess bone viability despite there being a covering metal component. By F-PET studies, we recently showed the absence of metabolism in the remaining part of femoral heads, 1-4 years after surgery in 11 of 46 consecutive cases. We now present the further development of bone metabolism in these 11 cases. Patients and methods 10 patients (11 chips) with previously shown loss of femoral head metabolism were evaluated by radiography and repeated F-PET scans, 3-6.5 years after surgery. The size of the area with low (18)F-fluoride PET uptake in the femoral head was compared to that in earlier PET images. Results No patients had any clinical symptoms; nor was any necrotic bone area visible in plain radiographs. On F-PET scans, 2 patients showed a diminished area with low uptake, 4 were unchanged, and 5 had enlarged areas. Interpretation Bone metabolism surrounding a volume of bone with no metabolic activity changes dynamically even 5 years after surgery. The presence of bone with minor uptake of F-tracer, indicating low or no bone metabolism, with further progression in 5 of 11 cases leads us to conclude that resurfacing THA should be used restrictively.</p
Preparation of Nucleosides Derived from 2-Nitroimidazole and d-Arabinose, d-Ribose, and d-Galactose by the Vorbrüggen Method and Their Conversion to Potential Precursors for Tracers To Image Hypoxia
Dose-escalation using intensity-modulated radiotherapy for prostate cancer - evaluation of quality of life with and without 18F-choline PET-CT detected simultaneous integrated boost
<p>Abstract</p> <p>Background</p> <p>In comparison to the conventional whole-prostate dose escalation, an integrated boost to the macroscopic malignant lesion might potentially improve tumor control rates without increasing toxicity. Quality of life after radiotherapy (RT) with vs. without <sup>18</sup>F-choline PET-CT detected simultaneous integrated boost (SIB) was prospectively evaluated in this study.</p> <p>Methods</p> <p>Whole body image acquisition in supine patient position followed 1 h after injection of 178-355MBq <sup>18</sup>F-choline. SIB was defined by a tumor-to-background uptake value ratio > 2 (GTV<sub>PET</sub>). A dose of 76Gy was prescribed to the prostate (PTV<sub>prostate</sub>) in 2Gy fractions, with or without SIB up to 80Gy. Patients treated with (n = 46) vs. without (n = 21) SIB were surveyed prospectively before (A), at the last day of RT (B) and a median time of two (C) and 19 month (D) after RT to compare QoL changes applying a validated questionnaire (EPIC - expanded prostate cancer index composite).</p> <p>Results</p> <p>With a median cut-off standard uptake value (SUV) of 3, a median GTV<sub>PET </sub>of 4.0 cm<sup>3 </sup>and PTV<sub>boost </sub>(GTV<sub>PET </sub>with margins) of 17.3 cm<sup>3 </sup>was defined. No significant differences were found for patients treated with vs. without SIB regarding urinary and bowel QoL changes at times B, C and D (mean differences ≤3 points for all comparisons). Significantly decreasing acute urinary and bowel score changes (mean changes > 5 points in comparison to baseline level at time A) were found for patients with and without SIB. However, long-term urinary and bowel QoL (time D) did not differ relative to baseline levels - with mean urinary and bowel function score changes < 3 points in both groups (median changes = 0 points). Only sexual function scores decreased significantly (> 5 points) at time D.</p> <p>Conclusions</p> <p>Treatment planning with <sup>18</sup>F-choline PET-CT allows a dose escalation to a macroscopic intraprostatic lesion without significantly increasing toxicity.</p
Osteonecrosis following resurfacing arthroplasty: A clinical positron emission tomography study of 14 cases
Background and purpose One of the main concerns regarding resurfacing arthroplasty is the viability of the remaining part of the femoral head, and the postoperative risk of a femoral neck fracture or collapse. In contrast to radiographic methods, positron emission tomography using the radiotracer [18F]-fluoride (Fluoride-PET) enables us to visualize the viability of bone in the remaining part of the head, despite the presence of the covering metal component
PSMA PET/CT: joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0
Here we aim to provide updated guidance and standards for the indication, acquisition, and interpretation of PSMA PET/CT for prostate cancer imaging. Procedures and characteristics are reported for a variety of available PSMA small radioligands. Different scenarios for the clinical use of PSMA-ligand PET/CT are discussed. This document provides clinicians and technicians with the best available evidence, to support the implementation of PSMA PET/CT imaging in research and routine practice
- …
