398 research outputs found

    The molecular chaperone Hsp90 is a component of the cap-binding complex and interacts with the translational repressor Cup during Drosophila oogenesis

    Get PDF
    In metazoa, the spatio-temporal translation of diverse mRNAs is essential to guarantee proper oocyte maturation and early embryogenesis. The eukaryotic translation initiation factor 4E (eIF4E), which binds the 5′ cap structure of eukaryotic mRNAs, associates with either stimulatory or inhibitory factors to modulate protein synthesis. In order to identify novel factors that might act at the translational level during Drosophila oogenesis, we have undertaken a functional proteomic approach and isolated the product of the Hsp83 gene, the evolutionarily conserved chaperone Hsp90, as a specific component of the cap-binding complex. Here we report that Hsp90 interacts in vitro with the translational repressor Cup. In addition, we show that Hsp83 and cup interact genetically, since lowering Hsp90 activity enhances the oogenesis alterations linked to diverse cup mutant alleles. Hsp90 and Cup co-localize in the cytoplasm of the developing germ-line cells within the germarium, thus suggesting a common function from the earliest stages of oogenesis. Taken together, our data start elucidating the role of Hsp90 during Drosophila female germ-line development and strengthen the idea that Cup has multiple essential functions during egg chamber development

    The GINGER Project and status of the ring-laser of LNGS

    Get PDF
    A ring-laser attached to the Earth measures the absolute angular velocity of the Earth summed to the relativistic precessions, de Sitter and Lense-Thirring. GINGER (Gyroscopes IN GEneral Relativity) is a project aiming at measuring the LenseThirring effect with a ground based detector; it is based on an array of ring-lasers. Comparing the Earth angular velocity measured by IERS and the measurement done with the GINGER array, the Lense-Thirring effect can be evaluated. Compared to the existing space experiments, GINGER provides a local measurement, not the averaged value and it is unnecessary to model the gravitational field. It is a proposal, but it is not far from being a reality. In fact the GrossRing G of the Geodesy Observatory of Wettzell has a sensitivity very close to the necessary one. G ofWettzell is part of the IERS system which provides the measure of the Length Of the DAY (LOD); G provides information on the fast component of LOD. In the last few years, a roadmap toward GINGER has been outlined. The experiment G-GranSasso, financed by the INFN Commission II, is developing instrumentations and tests along the roadmap of GINGER. In this short paper the main activities of G-GranSasso and some results will be presented. The first results of GINGERino will be reported, GINGERino is the large ring-laser installed inside LNGS and now in the commissioning phase. Ring-lasers provide as well important informations for geophysics, in particular the rotational seismology, which is an emerging field of science. GINGERino is one of the three experiments of common interest between INFN and INGV
    corecore