260 research outputs found

    Hot ion plasma heating experiments in SUMMA

    Get PDF
    Initial results are presented for the hot-ion plasma heating experiments conducted in the new SUMMA (superconducting magnetic mirror apparatus) at NASA Lewis Research Center. A discharge is formed by applying a radially inward dc electric field between cylindrical anodes and hallow cathodes located at the peak of the mirrors. Data were obtained at midplane magnetic field strengths from 1.0 to 3.5 tesla. Charge-exchange neutral particle energy analyzer data were reduced to ion temperatures using a plasma model that included a Maxwellian energy distribution superimposed on an azimuthal drift, finite ion orbits, and radial variations in density and electric field. The best ion temperatures in a helium plasma were 5 keV and in hydrogen the H2(+) and H(+) ions were 1.2 keV and 1 keV respectively. Optical spectroscopy line broadening measurements yielded ion temperatures about 50 percent higher than the charge-exchange neutral particle analyzer results. Spectroscopically obtained electron temperature ranged from 3 to 30 eV. Ion temperature was found to scale roughly linearly with the ratio of power input-to-magnetic field strength, P/B

    Representations of the q-deformed algebra Uq(iso2)U_q({\rm iso}_2)

    Full text link
    An algebra homomorphism ψ\psi from the q-deformed algebra Uq(iso2)U_q({\rm iso}_2) with generating elements II, T1T_1, T2T_2 and defining relations [I,T2]q=T1[I,T_2]_q=T_1, [T1,I]q=T2[T_1,I]_q=T_2, [T2,T1]q=0[T_2,T_1]_q=0 (where [A,B]q=q1/2ABq1/2BA[A,B]_q=q^{1/2}AB-q^{-1/2}BA) to the extension U^q(m2){\hat U}_q({\rm m}_2) of the Hopf algebra Uq(m2)U_q({\rm m}_2) is constructed. The algebra Uq(iso2)U_q({\rm iso}_2) at q=1q=1 leads to the Lie algebra iso2m2{\rm iso}_2 \sim {\rm m}_2 of the group ISO(2) of motions of the Euclidean plane. The Hopf algebra Uq(m2)U_q({\rm m}_2) is treated as a Hopf qq-deformation of the universal enveloping algebra of iso2{\rm iso}_2 and is well-known in the literature. Not all irreducible representations of Uq(m2)U_q({\rm m}_2) can be extended to representations of the extension U^q(m2){\hat U}_q({\rm m}_2). Composing the homomorphism ψ\psi with irreducible representations of U^q(m2){\hat U}_q({\rm m}_2) we obtain representations of Uq(iso2)U_q({\rm iso}_2). Not all of these representations of Uq(iso2)U_q({\rm iso}_2) are irreducible. The reducible representations of Uq(iso2)U_q({\rm iso}_2) are decomposed into irreducible components. In this way we obtain all irreducible representations of Uq(iso2)U_q({\rm iso}_2) when qq is not a root of unity. A part of these representations turns into irreducible representations of the Lie algebra iso2_2 when q1q\to 1. Representations of the other part have no classical analogue.Comment: 12 pages, LaTe

    On the dynamical behavior of the ABC model

    Full text link
    We consider the ABC dynamics, with equal density of the three species, on the discrete ring with NN sites. In this case, the process is reversible with respect to a Gibbs measure with a mean field interaction that undergoes a second order phase transition. We analyze the relaxation time of the dynamics and show that at high temperature it grows at most as N2N^2 while it grows at least as N3N^3 at low temperature

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Search for Periodic Gravitational Wave Sources with the Explorer Detector

    Get PDF
    We have developped a procedure for the search of periodic signals in the data of gravitational wave detectors. We report here the analysis of one year of data from the resonant detector Explorer, searching for pulsars located in the Galactic Center (GC). No signals with amplitude greater than hˉ=2.9 1024\bar{h}= 2.9~10^{-24}, in the range 921.32-921.38 Hz, were observed using data collected over a time period of 95.7 days, for a source located at α=17.70±0.01\alpha=17.70 \pm 0.01 hours and δ=29.00±0.05\delta=-29.00 \pm 0.05 degrees. Our procedure can be extended for any assumed position in the sky and for a more general all-sky search, even with a frequency correction at the source due to the spin-down and Doppler effects.Comment: One zipped file (Latex+eps figures). 33 pages, 14 figures. This and related material also at http://grwav3.roma1.infn.it

    An algebraic scheme associated with the noncommutative KP hierarchy and some of its extensions

    Full text link
    A well-known ansatz (`trace method') for soliton solutions turns the equations of the (noncommutative) KP hierarchy, and those of certain extensions, into families of algebraic sum identities. We develop an algebraic formalism, in particular involving a (mixable) shuffle product, to explore their structure. More precisely, we show that the equations of the noncommutative KP hierarchy and its extension (xncKP) in the case of a Moyal-deformed product, as derived in previous work, correspond to identities in this algebra. Furthermore, the Moyal product is replaced by a more general associative product. This leads to a new even more general extension of the noncommutative KP hierarchy. Relations with Rota-Baxter algebras are established.Comment: 59 pages, relative to the second version a few minor corrections, but quite a lot of amendments, to appear in J. Phys.

    Large eddy simulations of a utility-scale horizontal axis wind turbine including unsteady aerodynamics and fluid-structure interaction modelling

    Get PDF
    Growing horizontal axis wind turbines are increasingly exposed to significant sources of unsteadiness, such as tower shadowing, yawed or waked conditions and environmental effects. Due to increased dimensions, the use of steady tabulated airfoil coefficients to determine the airloads along long blades can be questioned in those numerical fluid models that do not have the sufficient resolution to solve explicitly and dynamically the flow close to the blade. Various models exist to describe unsteady aerodynamics (UA). However, they have been mainly implemented in engineering models, which lack the complete capability of describing the unsteady and multiscale nature of wind energy. To improve the description of the blades' aerodynamic response, a 2D unsteady aerodynamics model is used in this work to estimate the airloads of the actuator line model in our fluid–structure interaction (FSI) solver, based on 3D large eddy simulation. At each section along the actuator lines, a semi-empirical Beddoes-Leishman model includes the effects of noncirculatory terms, unsteady trailing edge separation, and dynamic stall in the dynamic evaluation of the airfoils' aerodynamic coefficients. The aeroelastic response of a utility-scale wind turbine under uniform, laminar and turbulent, sheared inflows is examined with one- and two-way FSI coupling between the blades' structural dynamics and local airloads, with and without the enhanced aerodynamics' description. The results show that the external half of the blade is dominated by aeroelastic effects, whereas the internal one is dominated by significant UA phenomena, which was possible to represent only thanks to the additional model implemented

    Observational constraints on early dark energy

    Full text link
    We review and update constraints on the Early Dark Energy (EDE) model from cosmological data sets, in particular Planck PR3 and PR4 cosmic microwave background (CMB) data and large-scale structure (LSS) data sets including galaxy clustering and weak lensing data from the Dark Energy Survey, Subaru Hyper Suprime-Cam, and KiDS+VIKING-450, as well as BOSS/eBOSS galaxy clustering and Lyman-α\alpha forest data. We detail the fit to CMB data, and perform the first analyses of EDE using the CAMSPEC and Hillipop likelihoods for Planck CMB data, rather than Plik, both of which yield a tighter upper bound on the allowed EDE fraction than that found with Plik. We then supplement CMB data with large-scale structure data in a series of new analyses. All these analyses are concordant in their Bayesian preference for Λ\LambdaCDM over EDE, as indicated by marginalized posterior distributions. We perform a series of tests of the impact of priors in these results, and compare with frequentist analyses based on the profile likelihood, finding qualitative agreement with the Bayesian results. All these tests suggest prior volume effects are not a determining factor in analyses of EDE. This work provides both a review of existing constraints and several new analyses.Comment: 59 pages, 23 figures, 11 tables, Invited review for International Journal of Modern Physics
    corecore