1,193 research outputs found
Understanding Contrasting Approaches to Nationwide Implementations of Electronic Health Record Systems:England, the USA and Australia
As governments commit to national electronic health record (EHR) systems, there is increasing international interest in identifying effective implementation strategies. We draw on Coiera's typology of national programmes - ‘top-down’, ‘bottom-up’ and ‘middle-out’ - to review EHR implementation strategies in three exemplar countries: England, the USA and Australia. In comparing and contrasting three approaches, we show how different healthcare systems, national policy contexts and anticipated benefits have shaped initial strategies. We reflect on progress and likely developments in the face of continually changing circumstances. Our review shows that irrespective of the initial strategy, over time there is likely to be convergence on the negotiated, devolved middle-out approach, which aims to balance the interests and responsibilities of local healthcare constituencies and national government to achieve national connectivity. We conclude that, accepting the current lack of empirical evidence, the flexibility offered by the middle-out approach may make this the best initial national strategy
Central American Subduction System
Workshop to Integrate Subduction Factory and Seismogenic Zone Studies in Central America, Heredia, Costa Rica, 18–22 June 2007 The driving force for great earthquakes and the cycling of water and climate-influencing volatiles (carbon dioxide, sulfur, halogens) across the convergent margin of Central America have been a focus of international efforts for over 8 years, as part of the MARGINS program of the U.S. National Science Foundation, the Collaborative Research Center (SFB 574) of the German Science Foundation, and the Central American science community. Over 120 scientists and students from 10 countries met in Costa Rica to synthesize this intense effort spanning from land to marine geological and geophysical studies
Vibrational spectrum of solid picene (C_22H_14)
Recently, Mitsuhashi et al., have observed superconductivity with transition
temperature up to 18 K in potassium doped picene (C22H14), a polycyclic
aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis
indicate the importance of electron-phonon coupling in the superconducting
mechanisms of these systems, with different emphasis on inter- and
intra-molecular vibrations, depending on the approximations used. Here we
present a combined experimental and ab-initio study of the Raman and infrared
spectrum of undoped solid picene, which allows us to unanbiguously assign the
vibrational modes. This combined study enables the identification of the modes
which couple strongly to electrons and hence can play an important role in the
superconducting properties of the doped samples
Seismogenic zone structure of the southern Middle America Trench, Costa Rica
The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ~300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region.
These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity.
This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level
Parameterized Algorithms for Modular-Width
It is known that a number of natural graph problems which are FPT
parameterized by treewidth become W-hard when parameterized by clique-width. It
is therefore desirable to find a different structural graph parameter which is
as general as possible, covers dense graphs but does not incur such a heavy
algorithmic penalty.
The main contribution of this paper is to consider a parameter called
modular-width, defined using the well-known notion of modular decompositions.
Using a combination of ILPs and dynamic programming we manage to design FPT
algorithms for Coloring and Partitioning into paths (and hence Hamiltonian path
and Hamiltonian cycle), which are W-hard for both clique-width and its recently
introduced restriction, shrub-depth. We thus argue that modular-width occupies
a sweet spot as a graph parameter, generalizing several simpler notions on
dense graphs but still evading the "price of generality" paid by clique-width.Comment: to appear in IPEC 2013. arXiv admin note: text overlap with
arXiv:1304.5479 by other author
Deep electrical resistivity structure of northwestern Costa Rica
First long-period magnetotelluric investigations were conducted in early 2008 in northwestern Costa Rica, along a profile that extends from the coast of the Pacific Ocean, traverses the volcanic arc and ends currently at the Nicaraguan border. The aim of this study is to gain insight into the electrical resistivity structure and thus fluid distribution at the continental margin where the Cocos plate subducts beneath the Caribbean plate. Preliminary two-dimensional models map the only moderately resistive mafic/ultramafic complexes of the Nicoya Peninsula (resistivity of a few hundred Ωm), the conductive forearc and the backarc basins (several Ωm). Beneath the backarc basin the data image a poor conductor in the basement with a clear termination in the south, which may tentatively be interpreted as the Santa Elena Suture. The volcanic arc shows no pronounced anomaly at depth, but a moderate conductor underlies the backarc with a possible connection to the upper mantle. A conductor at deep-crustal levels in the forearc may reflect fluid release from the downgoing slab
Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8(+) and CD4(+) T-cell responses with multiple specificities including a novel DR7-restricted epitope.
Long synthetic peptides and CpG-containing oligodeoxynucleotides are promising components for cancer vaccines. In this phase I trial, 19 patients received a mean of 8 (range 1-12) monthly vaccines s.c. composed of the long synthetic NY-ESO-179-108 peptide and CpG-B (PF-3512676), emulsified in Montanide ISA-51. In 18/18 evaluable patients, vaccination induced antigen-specific CD8(+) and CD4(+) T-cell and antibody responses, starting early after initiation of immunotherapy and lasting at least one year. The T-cells responded antigen-specifically, with strong secretion of IFNγ and TNFα, irrespective of patients' HLAs. The most immunogenic regions of the vaccine peptide were NY-ESO-189-102 for CD8(+) and NY-ESO-183-99 for CD4(+) T-cells. We discovered a novel and highly immunogenic epitope (HLA-DR7/NY-ESO-187-99); 7/7 HLA-DR7(+) patients generated strong CD4(+) T-cell responses, as detected directly ex vivo with fluorescent multimers. Thus, vaccination with the long synthetic NY-ESO-179-108 peptide combined with the strong immune adjuvant CpG-B induced integrated, robust and functional CD8(+) and CD4(+) T-cell responses in melanoma patients, supporting the further development of this immunotherapeutic approach
The Shortening of MWNT-SPION Hybrids by Steam Treatment Improves Their Magnetic Resonance Imaging Properties In Vitro and In Vivo
The steeply subducting edge of the Cocos Ridge : evidence from receiver functions beneath the northern Talamanca Range, south-central Costa Rica
The deep structure of the south-central Costa Rican subduction zone has not been studied in great detail so far because large parts of the area are virtually inaccessible. We present a receiver function study along a transect of broadband seismometers through the northern flank of the Cordillera de Talamanca (south Costa Rica). Below Moho depths, the receiver functions image a dipping positive conversion signal. This is interpreted as the subducting Cocos Plate slab, compatible with the conversions in the individual receiver functions. In finite difference modeling, a dipping signal such as the one imaged can only be reproduced by a steeply (80°) dipping structure present at least until a depth of about 70–100 km; below this depth, the length of the slab cannot be determined because of possible scattering effects. The proposed position of the slab agrees with previous results from local seismicity, local earthquake tomography, and active seismic studies, while extending the slab location to greater depths and steeper dip angle. Along the trench, no marked change is observed in the receiver functions, suggesting that the steeply dipping slab continues until the northern flank of the Cordillera de Talamanca, in the transition region between the incoming seamount segment and Cocos Ridge. Considering the time predicted for the establishment of shallow angle underthrusting after the onset of ridge collision, the southern Costa Rican subduction zone may at present be undergoing a reconfiguration of subduction style, where the transition to shallow underthrusting may be underway but still incomplete
Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents
Carbon nanotubes (CNTs) have been proposed as one of the most promising nanomaterials to be used in biomedicine for their applications in drug/gene delivery as well as biomedical imaging. The present study developed radio-labeled iron oxide decorated multi-walled CNTs (MWNT) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) imaging agents. Hybrids containing different amounts of iron oxide were synthesized by in situ generation. Physicochemical characterisations revealed the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations (FFT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) assured the conformation of prepared SPION as γ-Fe(2)O(3). High r(2) relaxivities were obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem(®). The hybrids were successfully radio-labeled with technetium-99m through a functionalized bisphosphonate and enabled SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality was found by histological examination and the presence of SPION and MWNT were identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues showed the co-localization of SPION and MWNT within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrated the capability of the present SPION-MWNT hybrids as dual MRI and SPECT contrast agents for in vivo use
- …
