3,730 research outputs found
Preliminary report on IUE spectra of the Crab Nebula
The Crab Nebula is marginally observable with the IUE. Observations of the optically brightest filamentary regions, made with IUE in August 1979, show the C IV lambda 1549, He II lambda 1640, and C III lambda 1909 emission lines. The intensities of these lines were compared with the visual wavelength data. It appears that carbon is not overabundant in the Crab; carbon/oxygen is approximately normal and oxygen is slightly scarcer than normal as a fraction of the total mass
Temporal Variability of the X-ray Emission of the Crab Nebula Torus
We have analyzed five ROSAT HRI images of the Crab Nebula spanning the years
1991 to 1997 and have found significant changes in the emission structure of
the X-ray torus surrounding the pulsar. Certain regions increase in brightness
by about 20% over the six years, while others show decreases in surface
brightness. The origin of these changes is unclear, but a possible explanation
is that the bulk velocity of the synchrotron radiating electrons has decreased
on the order of 20% as well.Comment: 15 pages plus 6 figures, figure 1 and figure 6 are in color, to
appear in The Astrophysical Journal, Jan 1, 1999, Vol. 510, #
Tungsten nuclear rocket, phase I, part 1 Final report
Tungsten water moderated nuclear rocket reactor experiments and analyse
Nurses\u27 Alumnae Association Bulletin - Volume 2 Number 2
Coming Events
Come On, \u2732
Ballot for Officers
Hospital News
Legislation
Scholarship Fund Notes
Refresher Course
Correspondence
Use of Heparin in Modern Treatment
The Jefferson Medical College Library
Nursing School Education
Action - Camera - Seniors
Degrees Received
Engagements
Weddings
Births
Deaths
Attention
Alumnae Bulletin Progress
Of Special Interest
Army Assignments
Organized Staff Meeting
A New WIMP Population in the Solar System and New Signals for Dark-Matter Detectors
We describe in detail how perturbations due to the planets can cause a
sub-population of WIMPs captured by scattering in surface layers of the Sun to
evolve to have orbits which no longer intersect the Sun. We argue that such
WIMPs, if their orbit has a semi-major axis less than 1/2 of Jupiter's, can
persist in the solar system for cosmological timescales. This leads to a new,
previously unanticipated WIMP population intersecting the Earth's orbit. The
WIMP-nucleon cross sections required for this population to be significant are
precisely those in the range predicted for SUSY dark matter, lying near the
present limits obtained by direct underground dark matter searches using
cyrogenic detectors. Thus, if a WIMP signal is observed in the next generation
of detectors, a potentially measurable signal due to this new population must
exist. This signal, lying in the keV range for Germanium detectors, would be
complementary to that of galactic halo WIMPs. A comparison of event rates,
anisotropies, and annual modulations would not only yield additional
confirmation that any claimed signal is indeed WIMP-based, but would also allow
one to gain information on the nature of the underlying dark matter model.Comment: Revtex, 37 pages including 6 figures, accepted by Phys. Rev D.
(version to be published, including changes made in response to referees
reports
Intermediate mass stars: updated models
A new set of stellar models in the mass range 1.2 to 9 is
presented. The adopted chemical compositions cover the typical galactic values,
namely and . A comparison among
the most recent compilations of similar stellar models is also discussed. The
main conclusion is that the differencies among the various evolutionary results
are still rather large. For example, we found that the H-burning evolutionary
time may differ up to 20 %. An even larger disagreement is found for the
He-burning phase (up to 40-50 %). Since the connection between the various
input physics and the numerical algorithms could amplify or counterbalance the
effect of a single ingredient on the resulting stellar model, the origin of
this discrepancies is not evident. However most of these discrepancies, which
are clearly found in the evolutionary tracks, are reduced on the isochrones. By
means of our updated models we show that the ages inferred by the theory of
stellar evolution is in excellent agreement with those obtained by using other
independent methods applied to the nearby Open Clusters. Finally, the
theoretical initial/final mass relation is revised.Comment: 35 pages, 24 figures, 4 tables, accepted for publication in the
Astrophisycal Journa
Inelastic Dark Matter
Many observations suggest that much of the matter of the universe is
non-baryonic. Recently, the DAMA NaI dark matter direct detection experiment
reported an annual modulation in their event rate consistent with a WIMP relic.
However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of
the region preferred by DAMA. We demonstrate that if the dark matter can only
scatter by making a transition to a slightly heavier state (Delta m ~ 100kev),
the experiments are no longer in conflict. Moreover, differences in the energy
spectrum of nuclear recoil events could distinguish such a scenario from the
standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for
inelastic dark matter in supersymmetric theories.Comment: 20 pages, 6 figure
Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells
Neuronal communication and endocrine signaling are fundamental for integrating
the function of tissues and cells in the body. Hormones released by endocrine
cells are transported to the target cells through the circulation. By contrast, transmitter
release from neurons occurs at specialized intercellular junctions, the synapses.
Nevertheless, the mechanisms by which signal molecules are synthesized,
stored, and eventually secreted by neurons and endocrine cells are very similar.
Neurons and endocrine cells have in common two different types of secretory
organelles, indicating the presence of two distinct secretory pathways. The synaptic
vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the
secretory granules (also referred to as dense core vesicles, because of their electron
dense content) are filled with neuropeptides and amines. In endocrine cells, peptide
hormones and amines predominate in secretory granules. The function and content
of vesicles, which share antigens with synaptic vesicles, are unknown for most
endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain
GABA, which may be involved in intrainsular signaling.'
Exocytosis of both synaptic vesicles and secretory granules is controlled by
cytoplasmic calcium. However, the precise mechanisms of the subsequent steps,
such as docking of vesicles and fusion of their membranes with the plasma membrane,
are still incompletely understood. This contribution summarizes recent observations
that elucidate components in neurons and endocrine cells involved in
exocytosis. Emphasis is put on the intracellular aspects of the release of secretory
granules that recently have been analyzed in detail
The secondary infall model of galactic halo formation and the spectrum of cold dark matter particles on Earth
The spectrum of cold dark matter particles on Earth is expected to have peaks
in velocity space associated with particles which are falling onto the Galaxy
for the first time and with particles which have fallen in and out of the
Galaxy only a small number of times in the past. We obtain estimates for the
velocity magnitudes and the local densities of the particles in these peaks. To
this end we use the secondary infall model of galactic halo formation which we
have generalized to take account of the angular momentum of the dark matter
particles. The new model is still spherically symmetric and it admits
self-similar solutions. In the absence of angular momentum, the model produces
flat rotation curves for a large range of values of a parameter
which is related to the spectrum of primordial density perturbations. We find
that the presence of angular momentum produces an effective core radius, i.e.
it makes the contribution of the halo to the rotation curve go to zero at zero
radius. The model provides a detailed description of the large scale properties
of galactic halos including their density profiles, their extent and total
mass. We obtain predictions for the kinetic energies of the particles in the
velocity peaks and estimates for their local densities as functions of the
amount of angular momentum, the age of the universe and .Comment: LaTeX, 39 pages including 18 figure
- …
