2,419 research outputs found
Activities of the Space Advanced Research Team at the University of Glasgow
A wide range of technologies and methodologies for space systems engineering are currently being developed at the University of Glasgow. Much of the work is centred on mission analysis and trajectory optimisation, complemented by research activities in autonomous and multi-agent systems. This paper will summarise these activities to provide a broad overview of the current research interests of the Space Advanced Research Team (SpaceART). It will be seen that although much of the work is mission driven and focussed on possible future applications, some activities represent basic research in space systems engineering
Collision and evaporation avoidance for spacecraft formation
<p>Formation flying is an extremely promising approach to space operations with the potential to enable new types of missions and providing substantial increase in the performance of future space science and Earth observation applications. To successfully validate formation flying however requires the development of specific technologies and methodologies, which are beyond current state-of-the art in a wide range of diverse fields such as metrology and spacecraft guidance, navigation and control. A number of missions are currently under different stages of development to implement some of these stringent requirements.</p>
<p>The paper develops and compares collision avoidance algorithms, demonstrating them within a 6 degrees of freedom, multi-spacecraft environment. At first a number of different collision avoidance scenarios will be identified alongside the triggers that will cause the algorithms to be activated. Once activated the collision avoidance algorithm must ensure corrective action to avoid catastrophic consequences to the mission.</p>
Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae
(Abridged) In the implicit large eddy simulation (ILES) paradigm, the
dissipative nature of high-resolution shock-capturing schemes is exploited to
provide an implicit model of turbulence. Recent 3D simulations suggest that
turbulence might play a crucial role in core-collapse supernova explosions,
however the fidelity with which turbulence is simulated in these studies is
unclear. Especially considering that the accuracy of ILES for the regime of
interest in CCSN, weakly compressible and strongly anisotropic, has not been
systematically assessed before. In this paper we assess the accuracy of ILES
using numerical methods most commonly employed in computational astrophysics by
means of a number of local simulations of driven, weakly compressible,
anisotropic turbulence. We report a detailed analysis of the way in which the
turbulent cascade is influenced by the numerics. Our results suggest that
anisotropy and compressibility in CCSN turbulence have little effect on the
turbulent kinetic energy spectrum and a Kolmogorov scaling is
obtained in the inertial range. We find that, on the one hand, the kinetic
energy dissipation rate at large scales is correctly captured even at
relatively low resolutions, suggesting that very high effective Reynolds number
can be achieved at the largest scales of the simulation. On the other hand, the
dynamics at intermediate scales appears to be completely dominated by the
so-called bottleneck effect, \ie the pile up of kinetic energy close to the
dissipation range due to the partial suppression of the energy cascade by
numerical viscosity. An inertial range is not recovered until the point where
relatively high resolution , which would be difficult to realize in
global simulations, is reached. We discuss the consequences for CCSN
simulations.Comment: 17 pages, 9 figures, matches published versio
Preliminary space mission design under uncertainty
This paper proposes a way to model uncertainties and to introduce them explicitly in the design process of a preliminary space mission. Traditionally, a system margin approach is used in order to take them into account. In this paper, Evidence Theory is proposed to crystallise the inherent uncertainties. The design process is then formulated as an Optimisation Under Uncertainties (OUU). Three techniques are proposed to solve the OUU problem: (a) an evolutionary multi-objective approach, (b) a step technique consisting of maximising the belief for different levels of performance, and (c) a clustering method that
firstly identifes feasible regions. The three methods are applied to the BepiColombo mission and their
effectiveness at solving the OUU problem are compared
On the consequences of a fragmentation due to a NEO mitigation strategy
The fragmentation of an Earth threatening asteroid as a result of a hazard mitigation mission is examined in
this paper. The minimum required energy for a successful impulsive deflection of a threatening object is
computed and compared with the energy required to break-up a small size asteroid. The fragmentation of an asteroid that underwent an impulsive deflection such as a kinetic impact or a nuclear explosion is a very plausible outcome in the light of this work. Thus a model describing the stochastic evolution of the cloud of fragments is described. The stochasticity of the fragmentation is given by a Gaussian probability distribution that
describes the initial relative velocities of each fragment of the asteroid, while the size distribution is expressed
through a power law function. The fragmentation model is applied to Apophis as illustrative example. If a barely
catastrophic disruption (i.e. the largest fragment is half the size the original asteroid) occurs 10 to 20 years prior
to the Earth encounter only a reduction from 50% to 80% of the potential damage is achieve for the Apophis test
case
Designs of multi-spacecraft swarms for the deflection of apophis by solar sublimation
This paper presents two conceptual designs of multi-spacecraft swarms used for deflecting Apophis. Each spacecraft is equipped with a solar concentrator assembly, which focuses the solar light, and a beaming system that projects a beam of light onto the surface of the asteroid. When the beams from each spacecraft are superimposed, the temperature on the surface is enough to sublimate the rock, creating a debris plume with enough force to slowly alter the orbit of Apophis. An overview of the dynamics, control and navigation strategies are presented along with preliminary system budgets
Positrons and 511 keV radiation as tracers of recent binary neutron star mergers
Neutron-rich material ejected from neutron star-neutron star (NS-NS) and
neutron star-black hole (NS-BH) binary mergers is heated by nuclear processes
to temperatures of a few hundred keV, resulting in a population of
electron-positron pairs. Some of the positrons escape from the outer layers of
the ejecta. We show that the population of low-energy positrons produced by
NS-NS and NS-BH mergers in the Milky Way can account for the observed 511-keV
line from the Galactic center (GC). Moreover, we suggest how positrons and the
associated 511-keV emission can be used as tracers of recent mergers. Recent
discovery of 511 keV emission from the ultra-faint dwarf galaxy Reticulum II,
consistent with a rare NS-NS merger event, provides a smoking-gun signature of
our proposal.Comment: 5 pages + 2 page supplement, 4 figures; v3: minor modifications,
published versio
Primer relevamiento de marcadores de resistencia a antibióticos en Enterobacteriaceae en Cochabamba, Bolivia
Se llevó a cabo un relevamiento molecular de la resistencia a antibióticos de importancia clínica en aislamientos recuperados en Cochabamba, Bolivia. Se estudiaron los genes codificantes de β-lactamasas de espectro extendido y de resistencia a quinolonas de localización plasmídica (PMQR) en un total de 101 aislamientos de enterobacterias resistentes a oximinocefalosporinas recuperados en distintos centros de salud, durante 4 meses (2012-2013). En todos ellos se detectó la presencia de cefotaximasas, las CTX-M grupo 1 fueron las más prevalentes (88,1%). La presencia de blaOXA-1 se detectó en el 76,4% de estos aislamientos. Se observó una elevada proporción de aislamientos resistentes a quinolonas. El gen aac(6′)-Ib-cr fue el determinante PMQR más frecuentemente identificado (83%). Además, 6 aislamientos resultaron ser portadores de qnrB. Por otro lado, cabe remarcar que 7 Escherichia coli presentaron qepA1 (6) y oqxAB (1); se documenta así por primera vez la presencia de oqxAB en Bolivia. Este estudio constituye el primer relevamiento de marcadores de resistencia en aislamientos clínicos de enterobacterias en Cochabamba, Bolivia; de este modo se contribuye al conocimiento regional de la situación epidemiológica, la cual presenta un escenario similar al observado en el resto de Latinoamérica.A molecular survey was conducted in Cochabamba, Bolivia, to characterize the mechanism involved in the resistance to clinically relevant antibiotics. Extended Spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance (PMQR) markers were investigated in a total of 101 oxyimino-cephalosporin-resistant enterobacteria recovered from different health centers during four months (2012?2013). CTX-M enzymes were detected in all isolates, being the CTX-M-1 group the most prevalent (88.1%). The presence of blaOXA-1 was detected in 76.4% of these isolates. A high quinolone resistance rate was observed among the included isolates. The aac(6′)-Ib-cr gene was the most frequent PMQR identified (83.0%). Furthermore, 6 isolates harbored the qnrB gene. Interestingly, qepA1 (6) and oqxAB (1), were detected in 7 Escherichia coli, being the latter the first to be reported in Bolivia. This study constitutes the first molecular survey on resistance markers in clinical enterobacterial isolates in Cochabamba, Bolivia, contributing to the regional knowledge of the epidemiological situation. The molecular epidemiology observed herein resembles the scene reported in South America.Fil: Saba Villarroel, Paola M.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Gutkind, Gabriel Osvaldo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Di Conza, José Alejandro. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Radice, Marcela Alejandra. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Copula regression spline models for binary outcomes
We introduce a framework for estimating the effect that a binary treatment has on a binary outcome in the presence of unobserved confounding. The methodology is applied to a case study which uses data from the Medical Expenditure Panel Survey and whose aim is to estimate the effect of private health insurance on health care utilization. Unobserved confounding arises when variables which are associated with both treatment and outcome are not available (in economics this issue is known as endogeneity). Also, treatment and outcome may exhibit a dependence which cannot be modeled using a linear measure of association, and observed confounders may have a non-linear impact on the treatment and outcome variables. The problem of unobserved confounding is addressed using a two-equation structural latent variable framework, where one equation essentially describes a binary outcome as a function of a binary treatment whereas the other equation determines whether the treatment is received. Non-linear dependence between treatment and outcome is dealt using copula functions, whereas covariate-response relationships are flexibly modeled using a spline approach. Related model fitting and inferential procedures are developed, and asymptotic arguments presented
Neutrino Signals of Core-Collapse Supernovae in Underground Detectors
For a suite of fourteen core-collapse models during the dynamical first
second after bounce, we calculate the detailed neutrino "light" curves expected
in the underground neutrino observatories Super-Kamiokande, DUNE, JUNO, and
IceCube. These results are given as a function of neutrino-oscillation modality
(normal or inverted hierarchy) and progenitor mass (specifically, post-bounce
accretion history), and illuminate the differences between the light curves for
1D (spherical) models that don't explode with the corresponding 2D
(axisymmetric) models that do. We are able to identify clear signatures of
explosion (or non-explosion), the post-bounce accretion phase, and the
accretion of the silicon/oxygen interface. In addition, we are able to estimate
the supernova detection ranges for various physical diagnostics and the
distances out to which various temporal features embedded in the light curves
might be discerned. We find that the progenitor mass density profile and
supernova dynamics during the dynamical explosion stage should be identifiable
for a supernova throughout most of the galaxy in all the facilities studied and
that detection by any one of them, but in particular more than one in concert,
will speak volumes about the internal dynamics of supernovae.Comment: Accepted to Monthly Notices of the Royal Astronomical Societ
- …
