2,129 research outputs found
Influence of point defects on magnetic vortex structures
We employed micro-Hall magnetometry and micromagnetic simulations to
investigate magnetic vortex pinning at single point defects in individual
submicron-sized permalloy disks. Small ferromagnetic particles containing
artificial point defects can be fabricated by using an image reversal electron
beam lithography process. Corresponding micromagnetic calculations, modeling
the defects within the disks as holes, give reasonable agreement between
experimental and simulated pinning and depinning field values
Strongly birefringent cut-wire pair structure as negative index wave plates at THz frequencies
We report a new approach for the design and fabrication of thin wave plates
with high transmission in the terahertz (THz) regime. The wave plates are based
on strongly birefringent cut-wire pair metamaterials that exhibit refractive
indices of opposite signs for two orthogonal polarization components of an
incident wave. As specific examples, we fabricated and investigated a quarter-
and a half-wave plate that revealed a peak intensity transmittance of 74% and
58% at 1.34 THz and 1.3 THz, respectively. Furthermore, the half wave plate
displayed a maximum figure of merit (FOM) of 23 at 1.3 THz where the refractive
index was -1.7. This corresponds to one of the highest FOMs reported at THz
frequencies so far. The presented results evidence that negative index
materials enter an application stage in terms of optical components for the THz
technology.Comment: 4 pages, 3 figures, submitted to Appl. Phys. Let
Distributed Holistic Clustering on Linked Data
Link discovery is an active field of research to support data integration in
the Web of Data. Due to the huge size and number of available data sources,
efficient and effective link discovery is a very challenging task. Common
pairwise link discovery approaches do not scale to many sources with very large
entity sets. We here propose a distributed holistic approach to link many data
sources based on a clustering of entities that represent the same real-world
object. Our clustering approach provides a compact and fused representation of
entities, and can identify errors in existing links as well as many new links.
We support a distributed execution of the clustering approach to achieve faster
execution times and scalability for large real-world data sets. We provide a
novel gold standard for multi-source clustering, and evaluate our methods with
respect to effectiveness and efficiency for large data sets from the geographic
and music domains
Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range
We present a metamaterial-based terahertz (THz) sensor for thickness
measurements of subwavelength-thin materials and refractometry of liquids and
liquid mixtures. The sensor operates in reflection geometry and exploits the
frequency shift of a sharp Fano resonance minimum in the presence of dielectric
materials. We obtained a minimum thickness resolution of 12.5 nm (1/16000 times
the wavelength of the THz radiation) and a refractive index sensitivity of 0.43
THz per refractive index unit. We support the experimental results by an
analytical model that describes the dependence of the resonance frequency on
the sample material thickness and the refractive index.Comment: 10 pages, 5 figure
Transformation bending device emulated by graded-index waveguide
We demonstrate that a transformation device can be emulated using a
gradient-index waveguide. The effective index of the waveguide is spatially
varied by tailoring a gradient thickness dielectric waveguide. Based on this
technology, we demonstrate a transformation device guiding visible light around
a sharp corner, with low scattering loss and reflection loss. The experimental
results are in good agreement with the numerical results.Comment: This paper is published at Optics Express 20, 13006 (2012
Data Integration over NoSQL Stores Using Access Path Based Mappings
International audienceDue to the large amount of data generated by user interactions on the Web, some companies are currently innovating in the domain of data management by designing their own systems. Many of them are referred to as NoSQL databases, standing for 'Not only SQL'. With their wide adoption will emerge new needs and data integration will certainly be one of them. In this paper, we adapt a framework encountered for the integration of relational data to a broader context where both NoSQL and relational databases can be integrated. One important extension consists in the efficient answering of queries expressed over these data sources. The highly denormalized aspect of NoSQL databases results in varying performance costs for several possible query translations. Thus a data integration targeting NoSQL databases needs to generate an optimized translation for a given query. Our contributions are to propose (i) an access path based mapping solution that takes benefit of the design choices of each data source, (ii) integrate preferences to handle conflicts between sources and (iii) a query language that bridges the gap between the SQL query expressed by the user and the query language of the data sources. We also present a prototype implementation, where the target schema is represented as a set of relations and which enables the integration of two of the most popular NoSQL database models, namely document and a column family stores
Construction of invisibility cloaks of arbitrary shape and size using planar layers of metamaterials
Transformation optics (TO) is a powerful tool for the design of electromagnetic and optical devices with novel functionality derived from the unusual properties of the transformation media. In general, the fabrication of TO media is challenging, requiring spatially varying material properties with both anisotropic electric and magnetic responses. Though metamaterials have been proposed as a path for achieving such complex media, the required properties arising from the most general transformations remain elusive, and cannot implemented by state-of-the-art fabrication techniques. Here, we propose faceted approximations of TO media of arbitrary shape in which the volume of the TO device is divided into flat metamaterial layers. These layers can be readily implemented by standard fabrication and stacking techniques. We illustrate our approximation approach for the specific example of a two-dimensional, omnidirectional "invisibility cloak", and quantify its performance using the total scattering cross section as a practical figure of merit. © 2012 American Institute of Physics.U.S. Army Research Office (Contract No. W911NF-09-1-0539)
Weathering rates and origin of inorganic carbon as influenced by river regulation in the boreal sub-arctic region of Sweden
International audienceMajor environmental stressors of boreal and sub-arctic rivers are hydrological changes and global warming and both factors will significantly influence the future evolution of the river chemistry in high latitudes. We tested the hypothesis whether lower concentrations of dissolved constituents observed in regulated rivers come along with lower weathering rates, though specific discharge as a major force for physical erosion and weathering is often higher in regulated river systems. In this study the river chemistry, weathering rates and related carbon dioxide consumption in two large watersheds in the sub arctic region of Sweden, one regulated river (Lule River) and one unregulated river (Kalix River), was investigated. Weathering rates of silicates in the two watersheds are shown to be different; the silicate weathering rate in Kalix River catchment is almost 30% higher than in the Lule River catchment. This is most likely a result of constructing large reservoirs in the former river valleys inundating the alluvial deposits and thus decreasing soil/water contact resulting in lower weathering rates. Furthermore, the difference observed in weathering rates between lowland regions and headwaters suggests that weathering in sub arctic boreal climates is controlled by the residence time for soil water rock interactions followed by lithology. The chemistry in the two rivers shows weathering of silicates as the origin for 68% of the inorganic carbon in the Lule River and 74% for Kalix River. The study clearly shows that river regulation significantly decreases alkalinity export to the sea because lower weathering rates gives less carbon dioxide ending up as DIC. By considering sources for inorganic carbon we here report that the inorganic carbon load that originates from respiration of organic matter in soils makes up of 30% and 35% of the total C export for the watersheds of the Kalix River and Lule River, respectively. Therefore, both the inorganic (i.e. the origin of carbon in DIC) and organic carbon load carbon must be considered when studying climate changes on the organic carbon load since effects from increased degradation of organic matter may lead to more weathering (higher production of DIC)
- …
