17 research outputs found

    Genetic dissection of the biochemical activities of human DNA repair protein, APE1

    Get PDF
    Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA repair enzyme involved in both base excision repair (BER) and nucleotide incision repair (NIR) pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5' to a number of oxidatively damaged bases. Here we propose to identify and characterize critical amino acids of APE1 involved in either BER and/or NIR functions by using the alignment of the known three-dimensional (or tertiary) structures of Xth family AP endonucleases including the Methanothermobacter thermautotrophicus Mth212, Bacillus subtilis ExoA (1), E. coli Xth and human APE1 proteins (2)

    Genetic dissection of the biochemical activities of human DNA repair protein, APE1

    Get PDF
    Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA repair enzyme involved in both base excision repair (BER) and nucleotide incision repair (NIR) pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5' to a number of oxidatively damaged bases. Here we propose to identify and characterize critical amino acids of APE1 involved in either BER and/or NIR functions by using the alignment of the known three-dimensional (or tertiary) structures of Xth family AP endonucleases including the Methanothermobacter thermautotrophicus Mth212, Bacillus subtilis ExoA (1), E. coli Xth and human APE1 proteins (2)

    African swine fever virus protein pE296R is a DNA repair apurinic/apyrimidinic endonuclease required for virus growth in swine macrophages.

    Get PDF
    We show here that the African swine fever virus (ASFV) protein pE296R, predicted to be a class II apurinic/apyrimidinic (AP) endonuclease, possesses endonucleolytic activity specific for AP sites. Biochemical characterization of the purified recombinant enzyme indicated that the Km and catalytic efficiency values for the endonucleolytic reaction are in the range of those reported for Escherichia coli endonuclease IV (endo IV) and human Ape1. In addition to endonuclease activity, the ASFV enzyme has a proofreading 3′→5′ exonuclease activity that is considerably more efficient in the elimination of a mismatch than in that of a correctly paired base. The three-dimensional structure predicted for the pE296R protein underscores the structural similarities between endo IV and the viral protein, supporting a common mechanism for the cleavage reaction. During infection, the protein is expressed at early times and accumulates at later times. The early enzyme is localized in the nucleus and the cytoplasm, while the late protein is found only in the cytoplasm. ASFV carries two other proteins, DNA polymerase X and ligase, that, together with the viral AP endonuclease, could act as a viral base excision repair system to protect the virus genome in the highly oxidative environment of the swine macrophage, the virus host cell. Using an ASFV deletion mutant lacking the E296R gene, we have determined that the viral endonuclease is required for virus growth in macrophages but not in Vero cells. This finding supports the existence of a viral reparative system to maintain virus viability in the infected macrophage

    Highly mutagenic exocyclic DNA adducts are substrates for the human nucleotide incision repair pathway

    Get PDF
    Background: Oxygen free radicals induce lipid peroxidation (LPO) that damages and breaks polyunsaturated fatty acids in cell membranes. LPO-derived aldehydes and hydroxyalkenals react with DNA leading to formation of etheno(ε)-bases including 1,N6-ethenoadenine (εA) and 3,N4-ethenocytosine (εC). The εA and εC residues are highly mutagenic in mammalian cells and eliminated in the base excision repair (BER) pathway and/or by AlkB family proteins in the direct damage reversal process. BER initiated by DNA glycosylases is thought to be the major pathway for the removal of non-bulky endogenous base damage. Alternatively, in the nucleotide incision repair (NIR) pathway, the apurinic/apyrimidinic (AP) endonucleases can directly incise DNA duplex 5’ to a damaged base in a DNA glycosylase-independent manner. Methodology/Principal Findings: Here, we characterized the substrate specificity of human major AP endonuclease 1, APE1, towards εA, εC, thymine glycol (Tg) and 7,8-dihydro-8-oxoguanine (8oxoG) residues when present in duplex DNA. APE1 cleaves oligonucleotide duplexes containing εA, εC and Tg, but not those containing 8oxoG. The activity depends strongly on sequence context. The apparent kinetic parameters of the reactions suggest that APE1 has high affinity to DNA containing ε-bases but cleaves DNA duplex at an extremely slow rate. Consistent with this observation, the oligonucleotide duplexes containing an ε-base strongly inhibit AP site nicking activity of APE1 with IC50 values in the range of 5-10 nM. MALDI-TOF MS analysis of the reaction products demonstrated that APE1-catalyzed cleavage of εA•T and εC•G duplexes generates as expected DNA fragments containing 5’-terminal ε-base residue. Conclusions/Significance: The fact that ε-bases and Tg in duplex DNA are recognized and cleaved by APE1 in vitro, suggest that NIR may act as a backup pathway to BER one to remove a large variety of genotoxic base lesions in human cells
    corecore