185 research outputs found
Setting the stage: social-environmental and motivational predictors of optimal training engagement
In this paper, we will firstly explore the central tenets of SDT. Research that has examined the social-environmental and motivation-related correlates of optimal training, performance and health-related engagement through the theoretical lens of SDT will be reviewed. Drawing from SDT-driven work undertaken in educational, sport and dance settings, we will draw conclusions and suggest future directions from a research and applied perspective
Differential responses of plasmacytoid dendritic cells to influenza virus and distinct viral pathogens.
Plasmacytoid dendritic cells (pDCs) are key components of the innate immune response that are capable of synthesizing and rapidly releasing vast amounts of type I interferons (IFNs), particularly IFN-α. Here we investigated whether pDCs, often regarded as a mere source of IFN, discriminate between various functionally discrete stimuli and to what extent this reflects differences in pDC responses other than IFN-α release. To examine the ability of pDCs to differentially respond to various doses of intact and infectious HIV, hepatitis C virus, and H1N1 influenza virus, whole-genome gene expression analysis, enzyme-linked immunosorbent assays, and flow cytometry were used to investigate pDC responses at the transcriptional, protein, and cellular levels. Our data demonstrate that pDCs respond differentially to various viral stimuli with significant changes in gene expression, including those involved in pDC activation, migration, viral endocytosis, survival, or apoptosis. In some cases, the expression of these genes was induced even at levels comparable to that of IFN-α. Interestingly, we also found that depending on the viral entity and the viral titer used for stimulation, induction of IFN-α gene expression and the actual release of IFN-α are not necessarily temporally coordinated. In addition, our data suggest that high-titer influenza A (H1N1) virus infection can stimulate rapid pDC apoptosis.
IMPORTANCE
Plasmacytoid dendritic cells (pDCs) are key players in the viral immune response. With the host response to viral infection being dependent on specific virus characteristics, a thorough examination and comparison of pDC responses to various viruses at various titers is beneficial for the field of virology. Our study illustrates that pDC infection with influenza virus, HIV, or hepatitis C virus results in a unique and differential response to each virus. These results have implications for future virology research, vaccine development, and virology as a whole
Melanoma NOS1 expression promotes dysfunctional IFN signaling.
In multiple forms of cancer, constitutive activation of type I IFN signaling is a critical consequence of immune surveillance against cancer; however, PBMCs isolated from cancer patients exhibit depressed STAT1 phosphorylation in response to IFN-α, suggesting IFN signaling dysfunction. Here, we demonstrated in a coculture system that melanoma cells differentially impairs the IFN-α response in PBMCs and that the inhibitory potential of a particular melanoma cell correlates with NOS1 expression. Comparison of gene transcription and array comparative genomic hybridization (aCGH) between melanoma cells from different patients indicated that suppression of IFN-α signaling correlates with an amplification of the NOS1 locus within segment 12q22-24. Evaluation of NOS1 levels in melanomas and IFN responsiveness of purified PBMCs from patients indicated a negative correlation between NOS1 expression in melanomas and the responsiveness of PBMCs to IFN-α. Furthermore, in an explorative study, NOS1 expression in melanoma metastases was negatively associated with patient response to adoptive T cell therapy. This study provides a link between cancer cell phenotype and IFN signal dysfunction in circulating immune cells
The Immune-related role of BRAF in melanoma
Background: The existence of a dichotomy between immunologically active and quiescent, tumor phenotypes has been recently recognized in several types of cancer. The activation of a Th1 type of immune signature has been shown to confer better prognosis and likelihood to respond to immunotherapy. However, whether such dichotomy depends on the genetic make-up of individual cancers is not known yet. BRAF and NRAS mutations are commonly acquired during melanoma progression. Here we explored the role of BRAF
and NRAS mutations in influencing the immune phenotype based on a classification previously identified by our group.
Methods: One-hundred-thirteen melanoma metastases underwent microarray analysis and
BRAF and NRAS genotyping. Allele-specific PCR was also performed in order to exclude low-frequency mutations.
Results: Comparison between BRAF and NRAS mutant versus wild type samples identified mostly constituents or regulators of MAPK and related pathways. When testing gene lists discriminative of BRAF, NRAS and MAPK alterations, we found that 112 BRAF-specific transcripts were able to distinguish the two immune-related phenotypes already described in melanoma, with the poor phenotype associated mostly with BRAF mutation. Noteworthy, such association was stronger in samples displaying low BRAF mRNA expression. However, when testing NRAS mutations, we were not able to find the same association.
Conclusion: This study suggests that BRAF mutation-related specific transcripts associate
with a poor phenotype in melanoma and provide a nest for further investigation.</br
Psychometric evaluation of the Basic Psychological Need Satisfaction and Frustration Scale (BPNSFS) in Italy
Two studies were conducted to adapt the Basic Psychological Need Satisfaction and Frustration Scale (BPNSFS) to the Italian context. Results suggest that the BPNSFS can be considered a promising instrument in the context of SDT-based research for investigating satisfaction and frustration of the three basic needs in Italy
Vascular endothelial growth factor induces contralesional corticobulbar plasticity and functional neurological recovery in the ischemic brain
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain
Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections.
Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families.
We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed.
We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture.
In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386-395
The stable traits of melanoma genetics: an alternate approach to target discovery
<p>Abstract</p> <p>Background</p> <p>The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number.</p> <p>Results</p> <p>Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including <it>MITF</it>, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis.</p> <p>Conclusions</p> <p>This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy.</p
Amphipod intersex, metals and latitude: A perspective
Intersexuality has been widely reported in crustaceans with several mechanisms being directly or indirectly held responsible for its occurrence, amongst which pollution. No mechanistic relationship between metals and intersex has ever been established. Also the incidence of intersex in populations of the same invertebrate species in a latitudinal gradient has never been studied so far. Three populations (Iceland,Scotland and Portugal) of the amphipod Echinogammarus marinus were scrutinized. Intersex females from Iceland registered the highest fecundity loss. Only in Scottish samples females with two genital papillae and males with only one genital papillae were observed. Nevertheless, water, biota and sediment samples pointed to equivalent metal levels, and in consonance the prevalence of intersex was not significantly different between locations. An unequivocal relationship between metal presence and intersex induction cannot be presented, but our results advocate the potential role of metals as a direct cause of intersexuality in E. marinus
Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68
<p>Abstract</p> <p>Background</p> <p>Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo.</p> <p>Methods</p> <p>In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection.</p> <p>Results</p> <p>We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection.</p> <p>Conclusions</p> <p>Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.</p
- …
