3,498 research outputs found

    Low-Energy Scale Excitations in the Spectral Function of Organic Monolayer Systems

    Full text link
    Using high-resolution photoemission spectroscopy we demonstrate that the electronic structure of several organic monolayer systems, in particular 1,4,5,8-naphthalene tetracarboxylic dianhydride and Copper-phtalocyanine on Ag(111), is characterized by a peculiar excitation feature right at the Fermi level. This feature displays a strong temperature dependence and is immediatly connected to the binding energy of the molecular states, determined by the coupling between the molecule and the substrate. At low temperatures, the line-width of this feature, appearing on top of the partly occupied lowest unoccupied molecular orbital of the free molecule, amounts to only 25\approx 25 meV, representing an unusually small energy scale for electronic excitations in these systems. We discuss possible origins, related e.g. to many-body excitations in the organic-metal adsorbate system, in particular a generalized Kondo scenario based on the single impurity Anderson model.Comment: 6 pages, 3 figures, accepted as PRB Rapid Communication

    Iron concentrations in neurons and glial cells with estimates on ferritin concentrations

    No full text
    BACKGROUND: Brain iron is an essential as well as a toxic redox active element. Physiological levels are not uniform among the different cell types. Besides the availability of quantitative methods, the knowledge about the brain iron lags behind. Thereby, disclosing the mechanisms of brain iron homeostasis helps to understand pathological iron-accumulations in diseased and aged brains. With our study we want to contribute closing the gap by providing quantitative data on the concentration and distribution of iron in neurons and glial cells in situ. Using a nuclear microprobe and scanning proton induced X-ray emission spectrometry we performed quantitative elemental imaging on rat brain sections to analyze the iron concentrations of neurons and glial cells. RESULTS: Neurons were analyzed in the neocortex, subiculum, substantia nigra and deep cerebellar nuclei revealing an iron level between [Formula: see text] and [Formula: see text]. The iron concentration of neocortical oligodendrocytes is fivefold higher, of microglia threefold higher and of astrocytes twofold higher compared to neurons. We also analyzed the distribution of subcellular iron concentrations in the cytoplasm, nucleus and nucleolus of neurons. The cytoplasm contains on average 73 of the total iron, the nucleolus-although a hot spot for iron-due to its small volume only 6 of total iron. Additionally, the iron level in subcellular fractions were measured revealing that the microsome fraction, which usually contains holo-ferritin, has the highest iron content. We also present an estimate of the cellular ferritin concentration calculating [Formula: see text] ferritin molecules per [Formula: see text] in rat neurons. CONCLUSION: Glial cells are the most iron-rich cells in the brain. Imbalances in iron homeostasis that lead to neurodegeneration may not only be originate from neurons but also from glial cells. It is feasible to estimate the ferritin concentration based on measured iron concentrations and a reasonable assumptions on iron load in the brain

    Echo of the Quantum Phase Transition of CeCu6x_{6-x}Aux_x in XPS: Breakdown of Kondo Screening

    Full text link
    We present an X-ray photoemission study of the heavy-fermion system CeCu6x_{6-x}Aux_x across the magnetic quantum phase transition of this compound at temperatures above the single-ion Kondo temperature TKT_K. In dependence of the Au concentration xx we observe a sudden change of the ff-occupation number nfn_f and the core-hole potential UdfU_{df} at the critical concentration xc=0.1x_c=0.1. We interpret these findings in the framework of the single-impurity Anderson model. Our results are in excellent agreement with findings from earlier UPS measurements %\cite{klein08qpt} and provide further information about the precursors of quantum criticality at elevated temperatures.Comment: 5 pages, 3 figures; published version, references updated, minor changes in wordin

    Challenges of Integrating NASAs Space Communication Networks

    Get PDF
    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process

    Core hole-electron correlation in coherently coupled molecules

    Full text link
    We study the core hole-electron correlation in coherently coupled molecules by energy dispersive near edge X-ray absorption fine-structure spectroscopy. In a transient phase, which exists during the transition between two bulk arrangements, 1,4,5,8-naphthalene-tetracarboxylicacid-dianhydride multilayer films exhibit peculiar changes of the line shape and energy position of the X-ray absorption signal at the C K-edge with respect to the bulk and gas phase spectra. By a comparison to a theoretical model based on a coupling of transition dipoles, which is established for optical absorption, we demonstrate that the observed spectroscopic differences can be explained by an intermolecular delocalized core hole-electron pair. By applying this model we can furthermore quantify the coherence length of the delocalized core-exciton.Comment: 5 pages, 3 figures, Accepted Version, PRL, minor wording change

    The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)

    Get PDF
    How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019

    Electron-phonon coupling and its evidence in the photoemission spectra of lead

    Full text link
    We present a detailed study on the influence of strong electron-phonon coupling to the photoemission spectra of lead. Representing the strong-coupling regime of superconductivity, the spectra of lead show characteristic features that demonstrate the correspondence of physical properties in the normal and the superconducting state, as predicted by the Eliashberg theory. These features appear on an energy scale of a few meV and are accessible for photoemission only by using modern spectrometers with high resolution in energy and angle.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Two-Dimensional Simulation of Left-Handed Metamaterial Flat Lens Using Remcon XFDTD

    Get PDF
    Remcom's XFDTD software was used to model the properties of a two-dimensional left-handed metamaterial (LHM) flat lens. The focusing capability and attenuation of the material were examined. The results showed strong agreement with experimental results and theoretical predictions of focusing effects and focal length. The inherent attenuation in the model corresponds well with the experimental results and implies that the code does a reasonably accurate job of modeling the actual metamaterial

    High-temperature signatures of quantum criticality in heavy fermion systems

    Full text link
    We propose a new criterion for distinguishing the Hertz-Millis (HM) and the local quantum critical (LQC) mechanism in heavy fermion systems with a magnetic quantum phase transition (QPT). The criterion is based on our finding that the spin screening of Kondo ions can be completely suppressed by the RKKY coupling to the surrounding magnetic ions even without magnetic ordering and that, consequently, the signature of this suppression can be observed in spectroscopic measurements above the magnetic ordering temperature. We apply the criterion to high-resolution photoemission (UPS) measurements on CeCu6x_{6-x}Aux_{x} and conclude that the QPT in this system is dominated by the LQC scenario.Comment: Inveted paper, International Conference on Magnetism, ICM 2009, Karlsruhe. Published version, added discussions of the relevance of Fermi-surface fluctuations and of a structural transition near the QC

    Evidence of momentum dependent hybridization in Ce2Co0.8Si3.2

    Full text link
    We studied the electronic structure of the Kondo lattice system Ce2Co0.8Si3.2 by angle-resolved photoemission spectroscopy (ARPES). The spectra obtained below the coherence temperature consist of a Kondo resonance, its spin-orbit partner and a number of dispersing bands. The quasiparticle weight related to the Kondo peak depends strongly on Fermi vectors associated with bulk bands. This indicates a highly anisotropic hybridization between conduction band and 4f electrons - V_{cf} in Ce2Co0.8Si3.2.Comment: 6 page
    corecore