25 research outputs found
Inter-diffusion of Plasmonic Metals and Phase Change Materials
This work investigates the problematic diffusion of metal atoms into phase
change chalcogenides, which can destroy resonances in photonic devices.
Interfaces between Ge2Sb2Te5 and metal layers were studied using X-ray
reflectivity (XRR) and reflectometry of metal-Ge2Sb2Te5 layered stacks. The
diffusion of metal atoms influences the crystallisation temperature and optical
properties of phase change materials. When Au, Ag, Al, W structures are
directly deposited on Ge2Sb2Te5 inter-diffusion occurs. Indeed, Au forms AuTe2
layers at the interface. Diffusion barrier layers, such as Si3N4 or stable
diffusionless plasmonic materials, such as TiN, can prevent the interfacial
damage. This work shows that the interfacial diffusion must be considered when
designing phase change material tuned photonic devices, and that TiN is the
most suitable plasmonic material to interface directly with Ge2Sb2Te5.Comment: 23 pages, 8 figures, articl
RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium
Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium. Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity. Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts an
