1,230 research outputs found
Scanning tunneling microscopy and spectroscopy of sodium-chloride overlayers on the stepped Cu(311) surface: Experimental and theoretical study
The physical properties of ultrathin NaCl overlayers on the stepped Cu(311)
surface have been characterized using scanning tunneling microscopy (STM) and
spectroscopy, and density functional calculations. Simulations of STM images
and differential conductance spectrum were based on the Tersoff-Hamann
approximation for tunneling with corrections for the modified tunneling barrier
at larger voltages and calculated Kohn-Sham states. Characteristic features
observed in the STM images can be directly related to calculated electronic and
geometric properties of the overlayers. The measured apparent barrier heights
for the mono-, bi-, and trilayers of NaCl and the corresponding
adsorption-induced changes in the work function, as obtained from the distance
dependence of the tunneling current, are well reproduced by and understood from
the calculated results. The measurements revealed a large reduction of the
tunneling conductance in a wide voltage region, resembling a band gap. However,
the simulated spectrum showed that only the onset at positive sample voltages
may be viewed as a valence band edge, whereas the onset at negative voltages is
caused by the drastic effect of the electric field from the tip on the
tunneling barrier
Site determination and thermally assisted tunneling in homogenous nucleation
A combined low-temperature scanning tunneling microscopy and density
functional theory study on the binding and diffusion of copper monomers,
dimers, and trimers adsorbed on Cu(111) is presented. Whereas atoms in trimers
are found in fcc sites only, monomers as well as atoms in dimers can occupy the
stable fcc as well as the metastable hcp site. In fact the dimer fcc-hcp
configuration was found to be only 1.3 meV less favorable with respect to the
fcc-fcc configuration. This enables a confined intra-cell dimer motion, which
at temperatures below 5 K is dominated by thermally assisted tunneling.Comment: 4 pages, 4 figure
Influence of a Feshbach resonance on the photoassociation of LiCs
We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational
ground state through photoassociation into the B1Pi state, which has recently
been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)].
Absolute rate constants for photoassociation at large detunings from the atomic
asymptote are determined and are found to be surprisingly large. The
photoassociation process is modeled using a full coupled-channel calculation
for the continuum state, taking all relevant hyperfine states into account. The
enhancement of the photoassociation rate is found to be caused by an `echo' of
the triplet component in the singlet component of the scattering wave function
at the inner turning point of the lowest triplet a3Sigma+ potential. This
perturbation can be ascribed to the existence of a broad Feshbach resonance at
low scattering energies. Our results elucidate the important role of couplings
in the scattering wave function for the formation of deeply bound ground state
molecules via photoassociation.Comment: Added Erratum, 20 pages, 9 figure
Population redistribution in optically trapped polar molecules
We investigate the rovibrational population redistribution of polar molecules
in the electronic ground state induced by spontaneous emission and blackbody
radiation. As a model system we use optically trapped LiCs molecules formed by
photoassociation in an ultracold two-species gas. The population dynamics of
vibrational and rotational states is modeled using an ab-initio electric dipole
moment function and experimental potential energy curves. Comparison with the
evolution of the v"=3 electronic ground state yields good qualitative
agreement. The analysis provides important input to assess applications of
ultracold LiCs molecules in quantum simulation and ultracold chemistry.Comment: 6 pages, 5 figures, EPJD Topical issue on Cold Quantum Matter -
Achievements and Prospect
Implication of the overlap representation for modelling generalized parton distributions
Based on a field theoretically inspired model of light-cone wave functions,
we derive valence-like generalized parton distributions and their double
distributions from the wave function overlap in the parton number conserved
s-channel. The parton number changing contributions in the t-channel are
restored from duality. In our construction constraints of positivity and
polynomiality are simultaneously satisfied and it also implies a model
dependent relation between generalized parton distributions and transverse
momentum dependent parton distribution functions. The model predicts that the
t-behavior of resulting hadronic amplitudes depends on the Bjorken variable
x_Bj. We also propose an improved ansatz for double distributions that embeds
this property.Comment: 15 pages, 8 eps figure
Formation of ultracold dipolar molecules in the lowest vibrational levels by photoassociation
We recently reported the formation of ultracold LiCs molecules in the
rovibrational ground state X1Sigma+,v''=0,J''=0 [J. Deiglmayr et al., PRL 101,
133004 (2008)]. Here we discuss details of the experimental setup and present a
thorough analysis of the photoassociation step including the photoassociation
line shape. We predict the distribution of produced ground state molecules
using accurate potential nergy curves combined with an ab-initio dipole
transition moment and compare this prediction with experimental ionization
spectra. Additionally we improve the value of the dissociation energy for the
X1Sigma+ state by high resolution spectroscopy of the vibrational ground state.Comment: Submitted to Faraday Discussions 142: Cold and Ultracold Molecules 18
pages, 8 figure
Quantum transport through STM-lifted single PTCDA molecules
Using a scanning tunneling microscope we have measured the quantum
conductance through a PTCDA molecule for different configurations of the
tip-molecule-surface junction. A peculiar conductance resonance arises at the
Fermi level for certain tip to surface distances. We have relaxed the molecular
junction coordinates and calculated transport by means of the Landauer/Keldysh
approach. The zero bias transmission calculated for fixed tip positions in
lateral dimensions but different tip substrate distances show a clear shift and
sharpening of the molecular chemisorption level on increasing the STM-surface
distance, in agreement with experiment.Comment: accepted for publication in Applied Physics
Examining Entitlement and Antagonism as Distinguishing Features of Narcissism
Objective: In this study, I worked to examine possible core features in narcissism. Researchers largely accept that there are at least two main dimensions of narcissism, grandiosity and vulnerability. However, these two dimensions have very different presentations in individuals, with very different personality factors, interpersonal traits, and relationships to other psychopathology. This raises the question of whether grandiosity and vulnerability are two versions of the same disorder, or if they would be better understood as different pathologies. This study examines whether the features of entitlement and antagonism can be used to distinguish grandiosity and vulnerability as both unique versions of narcissism separate from other similar disorders. Method: A sample of undergraduate students completed measures of grandiose and vulnerable narcissism, antagonism, entitlement, borderline features, and psychopathy. Two separate linear regression models were run for grandiose and vulnerable narcissism to measure what variables best accounted for the variance within those domains. Results: Psychopathy and antagonism were significant predictors of grandiose narcissism, and entitlement appeared to be nearing significance as a predictor. Borderline features and entitlement were significant predictors of vulnerable narcissism, and antagonism failed predict any additional variance in the model. Conclusions: These results reinforce a dimensional understanding of personality disorders. Further, this study contradicted prior research in the sense that antagonism failed to add meaningful predictive value to models of both grandiose and vulnerable narcissism. However, entitlement came close to being a significant predictive factor for both dimensions of narcissism, suggesting it may be the core factor that should be used to distinguish narcissism from other disorders
- …
