1,800 research outputs found

    Si-to-Si wafer bonding using evaporated glass

    Get PDF

    Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest

    No full text
    International audienceWe present measurements of aerosol physico-chemical properties below 5 km altitude over the tropical rain forest and the marine boundary layer (MBL) obtained during the LBA-CLAIRE 1998 project. The MBL aerosol size distribution some 50-100km of the coast of French Guyana and Suriname showed a bi-modal shape typical of aged and cloud processed aerosol. The average particle number density in the MBL was 383cm-3. The daytime mixed layer height over the rain forest for undisturbed conditions was estimated to be between 1200-1500m. During the morning hours the height of the mixed layer increased by 144-180mh-1. The median daytime aerosol number density in the mixed layer increased from 450cm-3 in the morning to almost 800cm-3 in the late afternoon. The evolution of the aerosol size distribution in the daytime mixed layer over the rain forest showed two distinct patterns. Between dawn and midday, the Aitken mode particle concentrations increased, whereas later during the day, a sharp increase of the accumulation mode aerosol number densities was observed, resulting in a doubling of the morning accumulation mode concentrations from 150cm-3 to 300cm-3. Potential sources of the Aitken mode particles are discussed here including the rapid growth of ultrafine aerosol particles formed aloft and subsequently entrained into the mixed layer, as well as the contribution of emissions from the tropical vegetation to Aitken mode number densities. The observed increase of the accumulation mode aerosol number densities is attributed to the combined effect of: the direct emissions of primary biogenic particles from the rain forest and aerosol in-cloud processing by shallow convective clouds. Based on the similarities among the number densities, the size distributions and the composition of the aerosol in the MBL and the nocturnal residual layer we propose that the air originating in the MBL is transported above the nocturnal mixed layer up to 300-400km inland over the rain forest by night without significant processing

    Single particle analysis of the accumulation mode aerosol over the northeast Amazonian tropical rain forest, Surinam, South America

    No full text
    International audienceSingle particle analysis of aerosols particles larger than 0.2 ?m diameter was performed on 24 samples collected over Surinam tropical rain forest and in the adjacent marine boundary layer (MBL) during the LBA-CLAIRE 98 campaign in March 1998. Elemental composition and morphology of 2308 particles was determined using SEM-EDX. The aerosol particles were divided into seven groups according to their chemical composition: organic particles, mineral dust, aged mineral dust, sea salt, aged sea salt, Ca-rich, and biogenic aerosol. However the organic material in aerosol particles cannot be identified directly by SEM-EDX, we present indirect method of detection of organic material using this technique. Samples were further divided with respect to the distinct atmospheric layers present in the tropical troposphere including MBL, continental mixed layer, cloud convective layer, free troposphere and region of deep convection outflow. The organic and mineral dust particles are two major groups observed over the rainforest. In the MBL also sea salt particles represented a large fraction between 15 and 27%. The organic particles control much of the chemical characteristic of the aerosol in the continental tropical troposphere. Their abundance ranged from less than 20% in the MBL to more than 90% in the free troposphere between 4.5- and 12.6-km altitude. During the transport of the air masses from the MBL over the rain forest, fraction of organic aerosol particles more than doubled, reaching 40?60% in the continental boundary layer. This increase was attributed to direct emissions of biogenic aerosols from the tropical vegetation. The high fraction of the organic accumulation mode particles in the upper tropical troposphere could be a good indicator for the air masses originated over the tropical rain forest

    Where the linearized Poisson-Boltzmann cell model fails: (I) spurious phase separation in charged colloidal suspensions

    Full text link
    We perform a linearization of the Poisson-Boltzmann (PB) density functional for spherical Wigner-Seitz cells that yields Debye-H\"uckel-like equations agreeing asymptotically with the PB results in the weak-coupling (high-temperature) limit. Both the canonical (fixed number of microions) as well as the semi-grand-canonical (in contact with an infinite salt reservoir) cases are considered and discussed in a unified linearized framework. In the canonical case, for sufficiently large colloidal charges the linearized theory predicts the occurrence of a thermodynamical instability with an associated phase separation of the homogeneous suspension into dilute (gas) and dense (liquid) phases. In the semi-grand-canonical case it is predicted that the isothermal compressibility and the osmotic-pressure difference between the colloidal suspension and the salt reservoir become negative in the low-temperature, high-surface charge or infinite-dilution (of polyions) limits. As already pointed out in the literature for the latter case, these features are in disagreement with the exact nonlinear PB solution inside a Wigner-Seitz cell and are thus artifacts of the linearization. By using explicitly gauge-invariant forms of the electrostatic potential we show that these artifacts, although thermodynamically consistent with quadratic expansions of the nonlinear functional and osmotic pressure, may be traced back to the non-fulfillment of the underlying assumptions of the linearization.Comment: 32 pages, 3 PostScript figures, submitted to J. Chem. Phy

    Solubility determination from clear points upon solvent addition

    Get PDF
    A method is described for determining the solubility of multicomponent crystalline compounds from clear points upon sample dilution at a constant temperature. Clear points are established by continuously adding a solvent mixture to a suspension of known composition until a clear solution appears. For validation, this solvent addition method is compared to the traditional equilibrium concentration method at constant temperature and the more recent temperature variation method with which clear point temperatures are determined upon increasing the sample temperature. Solubility data of binary systems (1 solute, 1 solvent) measured using the solvent addition method are obtained relatively quickly compared to the equilibrium concentration method. These solubility data are consistent with those of the temperature variation and the equilibrium concentration method. For the temperature variation method, the results are dependent on the heating rate. Likewise, for the solvent addition method, they are dependent on the addition rate. Additionally, for ternary systems involving antisolvent or cocrystals, solubilities are determined at a constant temperature using the solvent addition method. The use of the solvent addition method is especially valuable in the case of solvent mixtures and other complex multicomponent systems, in which the temperature variation method cannot be applied easily

    Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles

    Get PDF
    This work will present aerosol size distributions measured in a Saharan dust plume between 0.9 and 12 km altitude during the ACE-2 campaign 1997. The distributions contain a significant fraction of large particles of diameters from 4 to 30 μm. Radiative transfer calculations have been performed using these data as input. Shortwave, longwave as well as total atmospheric radiative effects (AREs) of the dust plume are investigated over ocean and desert within the scope of sensitivity studies considering varied input parameters like solar zenith angle, scaled total dust optical depth, tropospheric standard aerosol profiles and particle complex refractive index. The results indicate that the large particle fraction has a predominant impact on the optical properties of the dust. A single scattering albedo of ω<sub><I>o</I></sub>=0.75–0.96 at 550 nm was simulated in the entire dust column as well as 0.76 within the Saharan dust layer at ~4 km altitude indicating enhanced absorption. The measured dust leads to cooling over the ocean but warming over the desert due to differences in their spectral surface albedo and surface temperature. The large particles absorb strongly and they contribute at least 20% to the ARE in the dusty atmosphere. <br><br> From the measured size distributions modal parameters of a bimodal lognormal column volume size distribution were deduced, resulting in a coarse median diameter of ~9 μm and a column single scattering albedo of 0.78 at 550 nm. A sensitivity study demonstrates that variabilities in the modal parameters can cause completely different AREs and emphasises the warming effect of the large mineral dust particles
    corecore