3,529 research outputs found
Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors
The gravitational wave resonant detectors can be used as detectors of quark
nuggets, like nuclearites (nuclear matter with a strange quark). This search
has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar
detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was
located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower
detectors: signals in the bar due to showers are continuously detected and used
to characterize the antenna performances. The bar excitation mechanism is based
on the so called thermo-acoustic effect, studied on dedicated experiments that
use particle beams. This mechanism predicts that vibrations of bars are induced
by the heat deposited in the bar from the particle. The geometrical acceptance
of the bar detectors is 19.5 sr, that is smaller than that of other
detectors used for similar searches. However, the detection mechanism is
completely different and is more straightforward than in other detectors. We
will show the results of ten years of data from NAUTILUS (2003-2012) and 7
years from EXPLORER (2003-2009). The experimental limits we obtain are of
interest because, for nuclearites of mass less than grams, we find a
flux smaller than that one predicted considering nuclearites as dark matter
candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de
Janeiro 201
Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS
We performed a search for short gravitational wave bursts using about 3 years
of data of the resonant bar detectors Nautilus and Explorer. Two types of
analysis were performed: a search for coincidences with a low background of
accidentals (0.1 over the entire period), and the calculation of upper limits
on the rate of gravitational wave bursts. Here we give a detailed account of
the methodology and we report the results: a null search for coincident events
and an upper limit that improves over all previous limits from resonant
antennas, and is competitive, in the range h_rss ~1E-19, with limits from
interferometric detectors. Some new methodological features are introduced that
have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure
QoSatAr: a cross-layer architecture for E2E QoS provisioning over DVB-S2 broadband satellite systems
This article presents QoSatAr, a cross-layer architecture developed to provide end-to-end quality of service (QoS) guarantees for Internet protocol (IP) traffic over the Digital Video Broadcasting-Second generation (DVB-S2) satellite systems. The architecture design is based on a cross-layer optimization between the physical layer and the network layer to provide QoS provisioning based on the bandwidth availability present in the DVB-S2 satellite channel. Our design is developed at the satellite-independent layers, being in compliance with the ETSI-BSM-QoS standards. The architecture is set up inside the gateway, it includes a Re-Queuing Mechanism (RQM) to enhance the goodput of the EF and AF traffic classes and an adaptive IP scheduler to guarantee the high-priority traffic classes taking into account the channel conditions affected by rain events. One of the most important aspect of the architecture design is that QoSatAr is able to guarantee the QoS requirements for specific traffic flows considering a single parameter: the bandwidth availability which is set at the physical layer (considering adaptive code and modulation adaptation) and sent to the network layer by means of a cross-layer optimization. The architecture has been evaluated using the NS-2 simulator. In this article, we present evaluation metrics, extensive simulations results and conclusions about the performance of the proposed QoSatAr when it is evaluated over a DVB-S2 satellite scenario. The key results show that the implementation of this architecture enables to keep control of the satellite system load while guaranteeing the QoS levels for the high-priority traffic classes even when bandwidth variations due to rain events are experienced. Moreover, using the RQM mechanism the user’s quality of experience is improved while keeping lower delay and jitter values for the high-priority traffic classes. In particular, the AF goodput is enhanced around 33% over the drop tail scheme (on average)
Angles from Decays with Charm
Proceedings of the CKM 2005 Workshop (WG5), UC San Diego, 15-18 March 2005.Comment: 62 pages, 55 figures. Proceedings of the CKM 2005 Workshop (WG5), UC
San Diego, 15-18 March 200
Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites
Many experiments have searched for supersymmetric WIMP dark matter, with null
results. This may suggest to look for more exotic possibilities, for example
compact ultra-dense quark nuggets, widely discussed in literature with several
different names. Nuclearites are an example of candidate compact objects with
atomic size cross section. After a short discussion on nuclearites, the result
of a nuclearite search with the gravitational wave bar detectors Nautilus and
Explorer is reported. The geometrical acceptance of the bar detectors is 19.5
sr, that is smaller than that of other detectors used for similar
searches. However, the detection mechanism is completely different and is more
straightforward than in other detectors. The experimental limits we obtain are
of interest because, for nuclearites of mass less than g, we find a
flux smaller than that one predicted considering nuclearites as dark matter
candidates. Particles with gravitational only interactions (newtorites) are
another example. In this case the sensitivity is quite poor and a short
discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1
Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K
The interaction between cosmic rays and the gravitational wave bar detector
NAUTILUS is experimentally studied with the aluminum bar at temperature of
T=1.5 K. The results are compared with those obtained in the previous runs when
the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement
with the thermo-acoustic model; no large signals at unexpected rate are
noticed, unlike the data taken in the run at T = 0.14 K. The observations
suggest a larger efficiency in the mechanism of conversion of the particle
energy into vibrational mode energy when the aluminum bar is in the
superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters
Parameter estimation of compact binaries using the inspiral and ringdown waveforms
We analyze the problem of parameter estimation for compact binary systems
that could be detected by ground-based gravitational wave detectors.
So far this problem has only been dealt with for the inspiral and the
ringdown phases separately. In this paper, we combine the information from both
signals, and we study the improvement in parameter estimation, at a fixed
signal-to-noise ratio, by including the ringdown signal without making any
assumption on the merger phase. The study is performed for both initial and
advanced LIGO and VIRGO detectors.Comment: matching cqg versio
Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001
We report the result from a search for bursts of gravitational waves using
data collected by the cryogenic resonant detectors EXPLORER and NAUTILUS during
the year 2001, for a total measuring time of 90 days. With these data we
repeated the coincidence search performed on the 1998 data (which showed a
small coincidence excess) applying data analysis algorithms based on known
physical characteristics of the detectors. With the 2001 data a new interesting
coincidence excess is found when the detectors are favorably oriented with
respect to the Galactic Disk
Search for Periodic Gravitational Wave Sources with the Explorer Detector
We have developped a procedure for the search of periodic signals in the data
of gravitational wave detectors. We report here the analysis of one year of
data from the resonant detector Explorer, searching for pulsars located in the
Galactic Center (GC). No signals with amplitude greater than , in the range 921.32-921.38 Hz, were observed using data
collected over a time period of 95.7 days, for a source located at
hours and degrees. Our
procedure can be extended for any assumed position in the sky and for a more
general all-sky search, even with a frequency correction at the source due to
the spin-down and Doppler effects.Comment: One zipped file (Latex+eps figures). 33 pages, 14 figures. This and
related material also at http://grwav3.roma1.infn.it
- …
