478 research outputs found

    Cavity Soliton Laser based on mutually coupled semiconductor microresonators

    Get PDF
    We report on experimental observation of localized structures in two mutually coupled broad-areahttp://hal.archives-ouvertes.fr/images/calendar.gif semiconductor resonators. These structures coexist with a dark homogeneous background and they have the same properties as cavity solitons without requiring the presence of a driving beam into the system. They can be switched individually on and off by means of a local addressing beam

    Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses

    Full text link
    We study theoretically a new possibility of unipolar pulses generation in Raman-active medium excited by a series of few-cycle optical pulses. We consider the case when the Raman-active particles are uniformly distributed along the circle, and demonstrate a possibility to obtain a unipolar rectangular video pulses with an arbitrarily long duration, ranging from a minimum value equal to the natural period of the low frequency vibrations in the Raman-active medium

    Dissipative solitons which cannot be trapped

    Get PDF
    In this paper we study the behavior of dissipative solitons in systems with high order nonlinear dissipation and show how they cannot survive under the effect of trapping potentials both of rigid wall type or asymptotically increasing ones. This provides an striking example of a soliton which cannot be trapped and only survives to the action of a weak potential

    Generation of unipolar half-cycle pulse via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer

    Full text link
    We present a significantly different reflection process from an optically thin flat metallic or dielectric layer and propose a strikingly simple method to form approximately unipolar half-cycle optical pulses via reflection of a single-cycle optical pulse. Unipolar pulses in reflection arise due to specifics of effectively one-dimensional pulse propagation. Namely, we show that in considered system the field emitted by a flat medium layer is proportional to the velocity of oscillating medium charges instead of their acceleration as it is usually the case. When the single-cycle pulse interacts with linear optical medium, the oscillation velocity of medium charges can be then forced to keep constant sign throughout the pulse duration. Our results essentially differ from the direct mirror reflection and suggest a possibility of unusual transformations of the few-cycle light pulses in linear optical systems

    Realization of a semiconductor-based cavity soliton laser

    Get PDF
    The realization of a cavity soliton laser using a vertical-cavity surface-emitting semiconductor gain structure coupled to an external cavity with a frequency-selective element is reported. All-optical control of bistable solitonic emission states representing small microlasers is demonstrated by injection of an external beam. The control scheme is phase-insensitive and hence expected to be robust for all-optical processing applications. The motility of these structures is also demonstrated

    Patterns and localized structures in bistable semiconductor resonators

    Full text link
    We report experiments on spatial switching dynamics and steady state structures of passive nonlinear semiconductor resonators of large Fresnel number. Extended patterns and switching front dynamics are observed and investigated. Evidence of localization of structures is given.Comment: 5 pages with 9 figure

    Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials

    Full text link
    We study a ring cavity filled with a slab of a right-handed material and a slab of a left-handed material. Both layers are assumed to be nonlinear Kerr media. First, we derive a model for the propagation of light in a left-handed material. By constructing a mean-field model, we show that the sign of diffraction can be made either positive or negative in this resonator, depending on the thicknesses of the layers. Subsequently, we demonstrate that the dynamical behavior of the modulation instability is strongly affected by the sign of the diffraction coefficient. Finally, we study the dissipative structures in this resonator and reveal the predominance of a two-dimensional up-switching process over the formation of spatially periodic structures, leading to the truncation of the homogeneous hysteresis cycle.Comment: 8 pages, 5 figure

    Self-organization, pattern formation, cavity solitons, and rogue waves in singly resonant optical parametric oscillators

    Get PDF
    The spatiotemporal dynamics of singly resonant optical parametric oscillators with external seeding displays hexagonal, roll, and honeycomb patterns, optical turbulence, rogue waves, and cavity solitons. We derive appropriate mean-field equations with a sinc2 nonlinearity and demonstrate that off-resonance seeding is necessary and responsible for the formation of complex spatial structures via self-organization. We compare this model with those derived close to the threshold of signal generation and find that back-conversion of signal and idler photons is responsible for multiple regions of spatiotemporal self-organization when increasing the power of the pump field
    corecore