96 research outputs found

    Localization of ligand binding site in proteins identified in silico

    Get PDF
    Knowledge-based models for protein folding assume that the early-stage structural form of a polypeptide is determined by the backbone conformation, followed by hydrophobic collapse. Side chain-side chain interactions, mostly of hydrophobic character, lead to the formation of the hydrophobic core, which seems to stabilize the structure of the protein in its natural environment. The fuzzy-oil-drop model is employed to represent the idealized hydrophobicity distribution in the protein molecule. Comparing it with the one empirically observed in the protein molecule reveals that they are not in agreement. It is shown in this study that the irregularity of hydrophobic distributions is aim-oriented. The character and strength of these irregularities in the organization of the hydrophobic core point to the specificity of a particular protein\u27s structure/function. When the location of these irregularities is determined versus the idealized fuzzy-oil-drop, function-related areas in the protein molecule can be identified. The presented model can also be used to identify ways in which protein-protein complexes can possibly be created. Active sites can be predicted for any protein structure according to the presented model with the free prediction server at http://www.bioinformatics.cm-uj. krakow.pl/activesite. The implication based on the model presented in this work suggests the necessity of active presence of ligand during the protein folding process simulation. © Springer-Verlag 2007

    Determining protein similarity by comparing hydrophobic core structure

    Get PDF
    Formal assessment of structural similarity is − next to protein structure prediction − arguably the most important unsolved problem in proteomics. In this paper we propose a similarity criterion based on commonalities between the proteins’ hydrophobic cores. The hydrophobic core emerges as a result of conformational changes through which each residue reaches its intended position in the protein body. A quantitative criterion based on this phenomenon has been proposed in the framework of the CASP challenge. The structure of the hydrophobic core − including the placement and scope of any deviations from the idealized model − may indirectly point to areas of importance from the point of view of the protein’s biological function. Our analysis focuses on an arbitrarily selected target from the CASP11 challenge. The proposed measure, while compliant with CASP criteria (70–80% correlation), involves certain adjustments which acknowledge the presence of factors other than simple spatial arrangement of solids

    Improving diagnostic accuracy of dermoscopically equivocal pink cutaneous lesions with reflectance confocal microscopy in telemedicine settings : double reader concordance evaluation of 316 cases

    Get PDF
    Solitary pink lesions in differential diagnosis with hypopigmented/amelanotic melanoma present a diagnostic challenge in daily practice and are regularly referred for second expert opinion. Reflectance confocal microscopy (RCM) has been shown to improve diagnostic accuracy of dermoscopically equivocal pink lesions. No studies have been performed to evaluate the effect of adding a second expert reader and automatic removal of lesions with discordant management recommendations and its potential effect on diagnostic sensitivity and final management of these lesions in retrospective or telemedicine settings.To improve diagnostic accuracy and reduce potential mismanagement of dermoscopically equivocal pink cutaneous lesions by implementing double reader concordance evaluation of RCM images.316 dermoscopically equivocal pink lesions with dermoscopy-RCM image sets were evaluated retrospectively. Accuracy of three readers was evaluated by single reader evaluation of dermoscopy only and dermoscopy-RCM image sets and finally by double reader evaluation of dermoscopy-RCM image sets. Lesions with discordant diagnosis between two readers were automatically recommended for excision.Dermoscopy only evaluation resulted in an overall sensitivity of 95.9% and specificity of 33.6%, with 1 of 12 amelanotic melanomas mismanaged. Dermoscopy-RCM image set single reader evaluation resulted in an overall sensitivity of 93.9% and overall specificity of 54.2%, with 1 of 12 melanomas mismanaged. Dermoscopy-RCM image set double reader concordance evaluation resulted in an overall sensitivity of 98.3% and specificity of 42.7%, with no amelanotic melanoma mismanagement.Evaluation of dermoscopy-RCM image sets of equivocal pink lesions by a single reader in telemedicine settings is limited by the potential for misdiagnosis of dangerous malignant lesions. Double reader concordance evaluation with automatic referral of lesions for removal in the case of discordant diagnosis improves the diagnostic sensitivity in this subset of lesions and reduce potential misdiagnosis in settings where a second expert opinion may be employed

    Fuzzy oil drop model to interpret the structure of antifreeze proteins and their mutants

    Get PDF
    Mutations in proteins introduce structural changes and influence biological activity: the specific effects depend on the location of the mutation. The simple method proposed in the present paper is based on a two-step model of in silico protein folding. The structure of the first intermediate is assumed to be determined solely by backbone conformation. The structure of the second one is assumed to be determined by the presence of a hydrophobic center. The comparable structural analysis of the set of mutants is performed to identify the mutant-induced structural changes. The changes of the hydrophobic core organization measured by the divergence entropy allows quantitative comparison estimating the relative structural changes upon mutation. The set of antifreeze proteins, which appeared to represent the hydrophobic core structure accordant with “fuzzy oil drop” model was selected for analysis

    The use of supramolecular structures as protein ligands

    Get PDF
    Congo red dye as well as other eagerly self-assembling organic molecules which form rod-like or ribbon-like supramolecular structures in water solutions, appears to represent a new class of protein ligands with possible wide-ranging medical applications. Such molecules associate with proteins as integral clusters and preferentially penetrate into areas of low molecular stability. Abnormal, partly unfolded proteins are the main binding target for such ligands, while well packed molecules are generally inaccessible. Of particular interest is the observation that local susceptibility for binding supramolecular ligands may be promoted in some proteins as a consequence of function-derived structural changes, and that such complexation may alter the activity profile of target proteins. Examples are presented in this paper

    Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction

    Get PDF
    The comparison of eight tools applicable to ligand-binding site prediction is presented. The methods examined cover three types of approaches: the geometrical (CASTp, PASS, Pocket-Finder), the physicochemical (Q-SiteFinder, FOD) and the knowledge-based (ConSurf, SuMo, WebFEATURE). The accuracy of predictions was measured in reference to the catalytic residues documented in the Catalytic Site Atlas. The test was performed on a set comprising selected chains of hydrolases. The results were analysed with regard to size, polarity, secondary structure, accessible solvent area of predicted sites as well as parameters commonly used in machine learning (F-measure, MCC). The relative accuracies of predictions are presented in the ROC space, allowing determination of the optimal methods by means of the ROC convex hull. Additionally the minimum expected cost analysis was performed. Both advantages and disadvantages of the eight methods are presented. Characterization of protein chains in respect to the level of difficulty in the active site prediction is introduced. The main reasons for failures are discussed. Overall, the best performance offers SuMo followed by FOD, while Pocket-Finder is the best method among the geometrical approaches
    corecore