2,674 research outputs found

    Numerical Implementation of Harmonic Polylogarithms to Weight w = 8

    Full text link
    We present the FORTRAN-code HPOLY.f for the numerical calculation of harmonic polylogarithms up to w = 8 at an absolute accuracy of 4.91015\sim 4.9 \cdot 10^{-15} or better. Using algebraic and argument relations the numerical representation can be limited to the range x[0,21]x \in [0, \sqrt{2}-1]. We provide replacement files to map all harmonic polylogarithms to a basis and the usual range of arguments x],+[x \in ]-\infty,+\infty[ to the above interval analytically. We also briefly comment on a numerical implementation of real valued cyclotomic harmonic polylogarithms.Comment: 19 pages LATEX, 3 Figures, ancillary dat

    3-Loop Heavy Flavor Corrections in Deep-Inelastic Scattering with Two Heavy Quark Lines

    Full text link
    We consider gluonic contributions to the heavy flavor Wilson coefficients at 3-loop order in QCD with two heavy quark lines in the asymptotic region Q2m1(2)2Q^2 \gg m_{1(2)}^2. Here we report on the complete result in the case of two equal masses m1=m2m_1 = m_2 for the massive operator matrix element Agg,Q(3)A_{gg,Q}^{(3)}, which contributes to the corresponding heavy flavor transition matrix element in the variable flavor number scheme. Nested finite binomial sums and iterated integrals over square-root valued alphabets emerge in the result for this quantity in NN and xx-space, respectively. We also present results for the case of two unequal masses for the flavor non-singlet OMEs and on the scalar integrals ic case of Agg,Q(3)A_{gg,Q}^{(3)}, which were calculated without a further approximation. The graphs can be expressed by finite nested binomial sums over generalized harmonic sums, the alphabet of which contains rational letters in the ratio η=m12/m22\eta = m_1^2/m_2^2.Comment: 10 pages LATEX, 1 Figure, Proceedings of Loops and Legs in Quantum Field Theory, Weimar April 201

    Urinary tract infections in children and the risk of ESRF.

    Get PDF
    Paediatric guidance on diagnosis and treatment of urinary tract infections (UTIs) has in the past largely focused on identifying children with vesicoureteral reflux, thought to be at greatest risk of renal scarring. This practice has been questioned, specifically the accepted association between UTI and end-stage renal failure (ESRF) through renal scarring. The aim of this article is to ascertain whether we can predict with confidence the true level of risk that a child with a first-time UTI will subsequently develop ESRF attributable to UTI

    Recent progress on the calculation of three-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    Full text link
    We report on our latest results in the calculation of the three-loop heavy flavor contributions to the Wilson coefficients in deep-inelastic scattering in the asymptotic region Q2m2Q^2 \gg m^2. We discuss the different methods used to compute the required operator matrix elements and the corresponding Feynman integrals. These methods very recently allowed us to obtain a series of new operator matrix elements and Wilson coefficients like the flavor non-singlet and pure singlet Wilson coefficients.Comment: 11 pages Latex, 2 Figures, Proc. of Loops and Legs in Quantum Field Theory, April 2014, Weimar, German

    3-loop Massive O(TF2)O(T_F^2) Contributions to the DIS Operator Matrix Element AggA_{gg}

    Full text link
    Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element Agg,Q(3)A_{gg,Q}^{(3)} is performed. In the Mellin space result one finds finite nested binomial sums. In xx-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.Comment: 4 pages, Contribution to the Proceedings of QCD '14, Montpellier, July 201

    New Results on Massive 3-Loop Wilson Coefficients in Deep-Inelastic Scattering

    Full text link
    We present recent results on newly calculated 2- and 3-loop contributions to the heavy quark parts of the structure functions in deep-inelastic scattering due to charm and bottom.Comment: Contribution to the Proc. of Loops and Legs 2016, PoS, in prin

    Understanding Harris' understanding of CEA: is cost effective resource allocation undone?

    Get PDF
    We summarise and evaluate Harris' criticisms of cost-effectiveness analysis (CEA) and the alternative processes he commends to health care decision makers. In contrast to CEA, Harris' asserts that individuals have a right to life-saving treatment that cannot be denied on the basis of their capacity to benefit. We conclude that, whilst Harris' work has challenged the proponents of CEA and quality-adjusted life years to be explicit about the method's indirect discriminatory characteristics, his arguments ignore important questions about what ‘lives saved’ mean. Harris also attempts to avoid opportunity cost by advocating the same chance of treatment for every person desiring treatment. Using a simple example, we illustrate that an ‘equal chances’ lottery is not in the interest of any patient, as it reduces the chance of treatment for all patients by leaving some of the health budget unspent

    3-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    Full text link
    We present our most recent results on the calculation of the heavy flavor contributions to deep-inelastic scattering at 3-loop order in the large Q2Q^2 limit, where the heavy flavor Wilson coefficients are known to factorize into light flavor Wilson coefficients and massive operator matrix elements. We describe the different techniques employed for the calculation and show the results in the case of the heavy flavor non-singlet and pure singlet contributions to the structure function F2(x,Q2)F_2(x,Q^2).Comment: 4 pages Latex, 2 style files, 4 Figures, Contribution to the Proceedings of QCD '14, Montpellier, Jult 201
    corecore