323 research outputs found

    On the use of uavs in mining and archaeology - geo-accurate 3d reconstructions using various platforms and terrestrial views

    Get PDF
    During the last decades photogrammetric computer vision systems have been well established in scientific and commercial applications. Especially the increasing affordability of unmanned aerial vehicles (UAVs) in conjunction with automated multi-view processing pipelines have resulted in an easy way of acquiring spatial data and creating realistic and accurate 3D models. With the use of multicopter UAVs, it is possible to record highly overlapping images from almost terrestrial camera positions to oblique and nadir aerial images due to the ability to navigate slowly, hover and capture images at nearly any possible position. Multi-copter UAVs thus are bridging the gap between terrestrial and traditional aerial image acquisition and are therefore ideally suited to enable easy and safe data collection and inspection tasks in complex or hazardous environments. In this paper we present a fully automated processing pipeline for precise, metric and geo-accurate 3D reconstructions of complex geometries using various imaging platforms. Our workflow allows for georeferencing of UAV imagery based on GPS-measurements of camera stations from an on-board GPS receiver as well as tie and control point information. Ground control points (GCPs) are integrated directly in the bundle adjustment to refine the georegistration and correct for systematic distortions of the image block. We discuss our approach based on three different case studies for applications in mining and archaeology and present several accuracy related analyses investigating georegistration, camera network configuration and ground sampling distance. Our approach is furthermore suited for seamlessly matching and integrating images from different view points and cameras (aerial and terrestrial as well as inside views) into one single reconstruction. Together with aerial images from a UAV, we are able to enrich 3D models by combining terrestrial images as well inside views of an object by joint image processing to generate highly detailed, accurate and complete reconstructions

    Investigation of marmoset hybrids (Cebuella pygmaea x Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization

    Get PDF
    We report on the cytogenetics of twin offspring from an interspecies cross in marmosets (Callitrichinae, Platyrrhini), resulting from a pairing between a female Common marmoset (Callithrix jacchus, 2n = 46) and a male Pygmy marmoset (Cebuella pygmaea, 2n = 44). We analyzed their karyotypes by multi-directional chromosome painting employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. Both hybrid individuals had a karyotype with a diploid chromosome number of 2n = 45. As a complementary tool, interspecies comparative genomic hybridization (iCGH) was performed in order to screen for genomic imbalances between the hybrids and their parental species, and between Callithrix argentata and S. oedipus, respectively. Copyright (C) 2005 S. Karger AG, Basel

    Magnetic iron oxide nanoparticles as MRI contrast agents - a comprehensive physical and theoretical study

    Get PDF
    Magnetite nanoparticles, especially superparamagnetic iron oxide nanoparticles, are established contrast agents for magnetic resonance imaging. Magnetosomes, which are magnetite nanoparticles of biological origin, have been shown to have better contrast properties than current formulations possibly because of their larger size and high monodispersity. Here, we present an integrated study of magnetosomes and synthetic magnetite nanoparticles of varying size, hence, magnetic properties. We investigate not only the relaxation times as a measure for the contrast properties of these particles, but also their cytotoxicity and demonstrate the higher contrast of the larger particles. A theoretical model is presented that enables us to simulate the R2=R1 ratio of a contrast agent and con�rm that larger particles offer higher contrast. The results from this study illustrate the possibility to obtain colloidal stability of large magnetic nanoparticles for magnetic resonance imaging applications and serve as an impetus for a more quantitative description of the contrast effect as a function of the size

    A Molecular Phylogeny of Living Primates

    Get PDF
    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species

    ON THE USE OF UAVS IN MINING AND ARCHAEOLOGY - GEO-ACCURATE 3D RECONSTRUCTIONS USING VARIOUS PLATFORMS AND TERRESTRIAL VIEWS

    Get PDF
    During the last decades photogrammetric computer vision systems have been well established in scientific and commercial applications. Especially the increasing affordability of unmanned aerial vehicles (UAVs) in conjunction with automated multi-view processing pipelines have resulted in an easy way of acquiring spatial data and creating realistic and accurate 3D models. With the use of multicopter UAVs, it is possible to record highly overlapping images from almost terrestrial camera positions to oblique and nadir aerial images due to the ability to navigate slowly, hover and capture images at nearly any possible position. Multi-copter UAVs thus are bridging the gap between terrestrial and traditional aerial image acquisition and are therefore ideally suited to enable easy and safe data collection and inspection tasks in complex or hazardous environments. In this paper we present a fully automated processing pipeline for precise, metric and geo-accurate 3D reconstructions of complex geometries using various imaging platforms. Our workflow allows for georeferencing of UAV imagery based on GPS-measurements of camera stations from an on-board GPS receiver as well as tie and control point information. Ground control points (GCPs) are integrated directly in the bundle adjustment to refine the georegistration and correct for systematic distortions of the image block. We discuss our approach based on three different case studies for applications in mining and archaeology and present several accuracy related analyses investigating georegistration, camera network configuration and ground sampling distance. Our approach is furthermore suited for seamlessly matching and integrating images from different view points and cameras (aerial and terrestrial as well as inside views) into one single reconstruction. Together with aerial images from a UAV, we are able to enrich 3D models by combining terrestrial images as well inside views of an object by joint image processing to generate highly detailed, accurate and complete reconstructions

    Comparing chromosomal and mitochondrial phylogenies of the Indriidae (Primates, Lemuriformes)

    Get PDF
    The Malagasy primate family Indriidae comprises three genera with up to 19 species. Cytogenetic and molecular phylogenies of the Indriidae have been performed with special attention to the genus Propithecus. Comparative R-banding and FISH with human paints were applied to karyotypes of representatives of all three genera and confirmed most of the earlier R-banding results. However, additional chromosomal rearrangements were detected. A reticulated and a cladistic phylogeny, the latter including hemiplasies, have been performed. Cladistic analysis of cytogenetic data resulted in a phylogenetic tree revealing (1) monophyly of the family Indriidae, (2) monophyly of the genus Avahi, (3) sister–group relationships between Propithecus diadema and Propithecus edwardsi, and (4) the grouping of the latter with Indri indri, Propithecus verreauxi, and Propithecus tattersalli, and thus suggesting paraphyly of the genus Propithecus. A molecular phylogeny based on complete mitochondrial cytochrome b sequences of 16 species indicated some identical relationships, such as the monophyly of Avahi and the sister–group relationships of the eastern (P. diadema and P. edwardsi) to the western Propithecus species (P. verreauxi, Propithecus coquereli, and P. tattersalli). However, the main difference between the molecular and cytogenetic phylogenies consists in an early divergence of Indri in the molecular phylogeny while in the chromosomal phylogeny it is nested within Propithecus. The similarities and differences between molecular and cytogenetic phylogenies in relation to data on the species’ geographic distributions and mating systems allow us to propose a scenario of the evolution of Indriidae. Chromosomal and molecular processes alone or in combination created a reproductive barrier that was then followed by further speciation processes

    Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends

    Get PDF
    The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation is achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemichal control than top-down strategies, and are the main focus of this review.The research leading to these results has received funding from the European Research Council grant agreement ERC-2012-ADG-20120216-321266 for the project ComplexiTE. Portuguese Foundation for Science and Technology is gratefully acknowledged for the fellowship of Sara M. Oliveira (SFRH/BD/70107/2010)

    Modeling the relative risk of incidence and mortality of select vaccine-preventable diseases by wealth group and geographic region in Ethiopia

    Get PDF
    Immunization is one of the most effective public health interventions, saving millions of lives every year. Ethiopia has seen gradual improvements in immunization coverage and access to child health care services; however, inequalities in child mortality across wealth quintiles and regions remain persistent. We model the relative distributional incidence and mortality of four vaccine-preventable diseases (VPDs) (rotavirus diarrhea, human papillomavirus, measles, and pneumonia) by wealth quintile and geographic region in Ethiopia. Our approach significantly extends an earlier methodology, which utilizes the population attributable fraction and differences in the prevalence of risk and prognostic factors by population subgroup to estimate the relative distribution of VPD incidence and mortality. We use a linear system of equations to estimate the joint distribution of risk and prognostic factors in population subgroups, treating each possible combination of risk or prognostic factors as computationally distinct, thereby allowing us to account for individuals with multiple risk factors. Across all modeling scenarios, our analysis found that the poor and those living in rural and primarily pastoralist or agrarian regions have a greater risk than the rich and those living in urban regions of becoming infected with or dying from a VPD. While in absolute terms all population subgroups benefit from health interventions (e.g., vaccination and treatment), current unequal levels and pro-rich gradients of vaccination and treatment-seeking patterns should be redressed so to significantly improve health equity across wealth quintiles and geographic regions in Ethiopia.</p

    A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion.

    Get PDF
    Adipose tissue plasticity is orchestrated by molecularly and functionally diverse cells within the stromal vascular fraction (SVF). Although several mouse and human adipose SVF cellular subpopulations have by now been identified, we still lack an understanding of the cellular and functional variability of adipose stem and progenitor cell (ASPC) populations across human fat depots. To address this, we performed single-cell and bulk RNA sequencing (RNA-seq) analyses of &gt;30 SVF/Lin- samples across four human adipose depots, revealing two ubiquitous human ASPC (hASPC) subpopulations with distinct proliferative and adipogenic properties but also depot- and BMI-dependent proportions. Furthermore, we identified an omental-specific, high IGFBP2-expressing stromal population that transitions between mesothelial and mesenchymal cell states and inhibits hASPC adipogenesis through IGFBP2 secretion. Our analyses highlight the molecular and cellular uniqueness of different adipose niches, while our discovery of an anti-adipogenic IGFBP2+ omental-specific population provides a new rationale for the biomedically relevant, limited adipogenic capacity of omental hASPCs

    Achondroplasia manifesting as enchondromatosis and ossification of the spinal ligaments: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A girl presented with achondroplasia manifested as mild knee pain associated with stiffness of her back. A skeletal survey showed enchondroma-like metaphyseal dysplasia and ossification of the spinal ligaments. Magnetic resonance imaging of the spine further clarified the pathological composites.</p> <p>Case presentation</p> <p>A 7-year-old girl presented with the classical phenotypic features of achondroplasia. Radiographic documentation showed the co-existence of metaphyseal enchondromatosis and development of spinal bony ankylosis. Magnetic resonance imaging showed extensive ossification of the anterior and posterior spinal ligaments. Additional features revealed by magnetic resonance imaging included calcification of the peripheral vertebral bodies associated with anterior end-plate irregularities.</p> <p>Conclusion</p> <p>Enchondromas are metabolically active and may continue to grow and evolve throughout the patient's lifetime; thus, progressive calcification over a period of years is not unusual. Ossification of the spinal ligaments has a specific site of predilection and often occurs in combination with senile ankylosing vertebral hyperostosis. Nevertheless, ossification of the spinal ligaments has been encountered in children with syndromic malformation complex. It is a multifactorial disease in which complex genetic and environmental factors interact, potentially leading to chronic pressure on the spinal cord and nerve roots with subsequent development of myeloradiculopathy. Our patient presented with a combination of achondroplasia, enchondroma-like metaphyseal dysplasia and calcification of the spinal ligaments. We suggest that the development of heterotopic bone formation along the spinal ligaments had occurred through an abnormal ossified enchondral mechanism. We postulate that ossification of the spinal ligaments and metaphyseal enchondromatous changes are related to each other and represent impaired terminal differentiation of chondrocytes in this particular case. Standard radiographic examination showed spinal bony ankylosis only. The pathological composites of the vertebrae have been clarified using scanning technology. Extensive spinal ligament ossification associated with calcification of the peripheral vertebral bodies and anterior end-plate irregularities were notable. We report what may be a novel spinal and extraspinal malformation complex in a girl with achondroplasia.</p
    corecore