454 research outputs found

    Low Circulating IGF-I Bioactivity in Elderly Men is associated with Increased Mortality

    Get PDF
    Context: Low IGF-I signaling activity prolongs lifespan in certain animal models, but the precise role of IGF-I in human survival remains controversial. The IGF-I kinase receptor activation assay (IGF-I KIRA) is a novel method for measuring IGF-I bioactivity in human serum. We speculated that determination of circulating IGF-I bioactivity is more informative than levels of immunoreactive IGFI. Objective: To study IGF-I bioactivity in relation to human survival. Design: Prospective observational study. Setting: A clinical research center at a university hospital. Study participants: 376 healthy elderly men (aged 73 to 94 years). Main outcome Measures: IGF-I bioactivity was determined by the IGF-I KIRA. Total and free IGF-I were determined by IGF-I immunoassays. Mortality was registered during follow-up (mean 82 months). Results: During the follow-up period of 8.6 years 170 men (45%) died. Survival of subjects in the highest quartile of IGF-I bioactivity was significantly better than in the lowest quartile, both in the total study group (HR = 1.8, (95% CI: 1.2 − 2.8, p = 0.01) as well as in subgroups having a medical history of cardiovascular disease (HR = 2.4 (95% CI: 1.3 − 4.3, p = 0.003) or a high inflammatory risk profile (HR = 2.3 (95% CI: 1.2 − 4.5, p = 0.01). Significant relationships were not observed for total or free IGF-I. Conclusion: Our study suggests that a relatively high circulating IGF-I bioactivity in elderly men is associated with extended survival and with reduced cardiovascular risk

    Normal Values of Circulating IGF-I Bioactivity in the Healthy Population: Comparison with five widely used IGF-I immunoassays

    Get PDF
    Background: IGF-I immunoassays are primarily used to estimate IGF-I bioactivity. Recently, an IGFI specific Kinase Receptor Activation Assay (KIRA) has been developed as an alternative method. However, no normative values have been established for the IGF-I KIRA. Objective: To establish normative values for the IGF-I KIRA in healthy adults. Design: Cross-sectional study in healthy non-fasting blood donors. Study participants: 426 healthy individuals (310 M, 116 F; age range: 18 – 79 yrs) Main outcome Measures: IGF-I bioactivity determined by the KIRA. Results were compared with total IGF-I, measured by five different IGF-I immunoassays. Results: Mean (± SD) IGF-I bioactivity was 423 (± 131) pmol/L and decreased with age (β = -3.4 pmol/L/yr, p < 0.001). In subjects younger than 55 yrs mean IGF-I bioactivity was significantly higher in women than in men. Above this age this relationship was inverse, suggesting a drop in IGF-I bioactivity after menopause. This drop was not reflected in total IGF-I levels. IGF-I bioactivity was significantly related to total IGF-I (rs varied between 0.46 – 0.52; P-values < 0.001). Conclusions: We established age-specific normative values for the IGF-I KIRA. We observed a significant drop in IGF-I bioactivity in women between 50 and 60 years, which was not perceived by IGF-I immunoassays. The IGF-I KIRA, when compared to IGF-I immunoassays, theoretically has the advantage that it measures net effects of IGF-binding proteins on IGF-I receptor activation. However, it has to be proven whether information obtained by the IGF-I KIRA is clinically more relevant than measurements obtained by IGF-I immunoassays

    Effectiveness of using WiFi technologies to detect and predict building occupancy

    Full text link
    This paper presents findings of a case-study demonstrating the effectiveness of using WiFi networks to detect occupancy as opposed to CO2 sensors, commonly used for demand-controlled heating, ventilation and air conditioning (HVAC) systems. The study took place in one building at the University of Manitoba Fort Garry campus in Canada. In a classroom, the number of WiFi connections was collected on an hourly basis over one-week, simultaneously with CO2 concentration levels at 10-min intervals. The number of occupants in this classroom was also counted on an hourly basis over the same study period. Data analysis showed that WiFi counts predicted actual occupancy levels more accurately than CO2 concentration levels, thus validating the use of this technology to track occupancy. This study was the first to use both CO2 concentration and WiFi counts simultaneously as indicators for occupancy. Results demonstrated the possibility of using WiFi counts in large buildings for controlling HVAC systems at a higher accuracy and lower cost than other sensor technologies

    An analysis of the relationship between the productivity and the non-communicable diseases

    Get PDF
    This study aims to assess the impacts of the non-communicable diseases of bank employees on the productivities in the selected banks in Colombo district, Sri Lanka by using mixed methods viz. qualitative and quantitative methods. The data have been collected by using well-structured questionnaire during the period in 2017. The tools used in this study so as to achieve the objective of this study are descriptive statistics and regression models. As per the descriptive statistics, the nature of the non-communicable diseases among the employees of the banks has been identified elaborately. According to the analysis of the regression model 01 and model 02, the productivity is found as the dependent variable and in the regression models 01 and model 02, Attitude and Diagnosis is found as independent variables respectively. The productivity of the employee is considered the sole dependent variable. It is found that Attitude and Diagnosis are inversely related to productivity at a considerable significant level. It is concluded that Diagnosis is the most influencing factor on the impact of the productivity of the employees

    Tegumentary leishmaniasis and coinfections other than HIV

    Get PDF
    <div><p>Background</p><p>Tegumentary leishmaniasis (TL) is a disease of skin and/or mucosal tissues caused by <i>Leishmania</i> parasites. TL patients may concurrently carry other pathogens, which may influence the clinical outcome of TL.</p><p>Methodology and principal findings</p><p>This review focuses on the frequency of TL coinfections in human populations, interactions between <i>Leishmania</i> and other pathogens in animal models and human subjects, and implications of TL coinfections for clinical practice. For the purpose of this review, TL is defined as all forms of cutaneous (localised, disseminated, or diffuse) and mucocutaneous leishmaniasis. Human immunodeficiency virus (HIV) coinfection, superinfection with skin bacteria, and skin manifestations of visceral leishmaniasis are not included. We searched MEDLINE and other databases and included 73 records: 21 experimental studies in animals and 52 studies about human subjects (mainly cross-sectional and case studies). Several reports describe the frequency of <i>Trypanosoma cruzi</i> coinfection in TL patients in Argentina (about 41%) and the frequency of helminthiasis in TL patients in Brazil (15% to 88%). Different hypotheses have been explored about mechanisms of interaction between different microorganisms, but no clear answers emerge. Such interactions may involve innate immunity coupled with regulatory networks that affect quality and quantity of acquired immune responses. Diagnostic problems may occur when concurrent infections cause similar lesions (e.g., TL and leprosy), when different pathogens are present in the same lesions (e.g., <i>Leishmania</i> and <i>Sporothrix schenckii</i>), or when similarities between phylogenetically close pathogens affect accuracy of diagnostic tests (e.g., serology for leishmaniasis and Chagas disease). Some coinfections (e.g., helminthiasis) appear to reduce the effectiveness of antileishmanial treatment, and drug combinations may cause cumulative adverse effects.</p><p>Conclusions and significance</p><p>In patients with TL, coinfection is frequent, it can lead to diagnostic errors and delays, and it can influence the effectiveness and safety of treatment. More research is needed to unravel how coinfections interfere with the pathogenesis of TL.</p></div

    ArteFill® Permanent Injectable for Soft Tissue Augmentation: II. Indications and Applications

    Get PDF
    Patients ask for procedures with long-lasting effects. ArteFill is the first permanent injectable approved in 2006 by the FDA for nasolabial folds. It consists of cleaned microspheres of polymethylmethacrylate (PMMA) suspended in bovine collagen. Over the development period of 20 years most of its side effects have been eliminated to achieve the same safety standard as today’s hyaluronic acid products. A 5-year follow-up study in U.S. clinical trial patients has shown the same wrinkle improvement as seen at 6 months. Long-term follow-up in European Artecoll patients has shown successful wrinkle correction lasting up to 15 years. A wide variety of off-label indications and applications have been developed that help the physician meet the individual needs of his/her patients. Serious complications after ArteFill injections, such as granuloma formation, have not been reported due to the reduction of PMMA microspheres smaller than 20 μm to less than 1% “by the number.” Minor technique-related side effects, however, may occur during the initial learning curve. Patient and physician satisfaction with ArteFill has been shown to be greater than 90%

    ArteFill® Permanent Injectable for Soft Tissue Augmentation: I. Mechanism of Action and Injection Techniques

    Get PDF
    After more than 25 years of research and development, in October 2006 ArteFill® became the first and only permanent injectable wrinkle filler to receive FDA approval. ArteFill is a third-generation polymeric microsphere-based filler, following its predecessor Artecoll®, which was marketed outside the United States between 1994 and 2006. ArteFill is approved for the correction of nasolabial folds and has been used in over 15,000 patients since its U.S. market introduction in February 2007. No serious side effects have been reported to date according to the FDA’s MAUDE reporting database. ArteFill consists of polymethylmethacrylate (PMMA) microspheres (20% by volume), 30–50 μm in diameter, suspended in 3.5% bovine collagen solution (80% by volume) and 0.3% lidocaine. The collagen carrier is absorbed within 1 month after injection and completely replaced by the patient’s own connective tissue within 3 months. Each cc of ArteFill contains approximately six million microspheres and histological studies have shown that long-term wrinkle correction consists of 80% of the patient’s own connective tissue and 20% microspheres. The standard injection technique is subdermal tunneling that delivers a strand of ArteFill at the dermal–subdermal junction. This strand beneath a wrinkle or fold acts like a support structure that protects against further wrinkling and allows the diminished thickness of the dermis to recover to its original thickness
    corecore