406 research outputs found
High-Angular Resolution Dust Polarization Measurements: Shaped B-field Lines in the Massive Star Forming Region Orion BN/KL
We present observational results of the thermal dust continuum emission and
its linear polarization in one of the nearest massive star-forming sites Orion
BN/KL in Orion Molecular Cloud-1. The observations were carried out with the
Submillimeter Array. With an angular resolution of 1" (~2 mpc; 480 AU), we have
detected and resolved the densest cores near the BN/KL region. At a wavelength
of ~870 micron, the polarized dust emission can be used to trace the structure
of the magnetic field in this star-forming core. The dust continuum appears to
arise from a V-shaped region, with a cavity nearly coincident with the center
of the explosive outflows observed on larger scales. The position angles
(P.A.s) of the observed polarization vary significantly by a total of about 90
degree but smoothly, i.e., curl-like, across the dust ridges. Such a
polarization pattern can be explained with dust grains being magnetically
aligned instead of mechanically with outflows, since the latter mechanism would
cause the P.A.s to be parallel to the direction of the outflow, i.e.,
radial-like. The magnetic field projected in the plane of sky is therefore
derived by rotating the P.A.s of the polarization by 90 degree. We find an
azimuthally symmetric structure in the overall magnetic field morphology, with
the field directions pointing toward 2.5" west to the center of the explosive
outflows. We also find a preferred symmetry plane at a P.A. of 36 degree, which
is perpendicular to the mean magnetic field direction (120 degree) of the 0.5
pc dust ridge. Two possible interpretations of the origin of the observed
magnetic field structure are discussed.Comment: 27 pages, 7 figures; ApJ in pres
Far infrared observations of pre-protostellar sources in Lynds 183
Using ISOPHOT maps at 100 and 200um and raster scans at 100, 120, 150 and
200um we have detected four unresolved far-infrared sources in the high
latitude molecular cloud L183. Two of the sources are identified with 1.3mm
continuum sources found by Ward-Thompson et al. and are located near the
temperature minimum and the coincident column density maximum of dust
distribution. For these two sources, the ISO observations have enabled us to
derive temperatures (about 8.3 K) and masses (about 1.4 and 2.4 solar masses).
They are found to have masses greater than or comparable to their virial masses
and are thus expected to undergo gravitational collapse. We classify them as
pre-protostellar sources. The two new sources are good candidates for
pre-protostellar sources or protostars within L183.Comment: 12 pages, 7 Postscript figures, 1 JPEG figure. Accepted for
publication in Astronomy & Astrophysic
Hard X-ray emission in the star-forming region ON2: discovery with XMM-Newton
We obtained X-ray XMM-Newton observations of the open cluster Berkeley 87 and
the massive star-forming region (SFR) ON 2. In addition, archival infrared
Spitzer Space Telescope observations were used. It is likely that the SFR ON 2
and Berkeley 87 are at the same distance, 1.23 kpc, and hence are associated.
The XMM-Newton observations detected X-rays from massive stars in Berkeley 87
as well as diffuse emission from the SFR ON 2. The two patches of diffuse X-ray
emission are encompassed in the shell-like H II region GAL 75.84+0.40 in the
northern part of ON 2 and in the ON 2S region in the southern part of ON 2. The
diffuse emission from GAL 75.84+0.40 suffers an absorption column equivalent to
A_V approx. 28 mag. Its spectrum can be fitted either with a thermal plasma
model at T < 30 MK or by an absorbed power-law model with gamma; approx. -2.6.
The X-ray luminosity of GAL 75.84+0.40 is L_X approx. 6 10^31 erg/s. The
diffuse emission from ON 2S is adjacent to the ultra-compact H II (UCHII)
region Cygnus 2N, but does not coincide with it or with any other known UCHII
region. It has a luminosity of L_X approx. 4 10^31 erg/s. The spectrum can be
fitted with an absorbed power-law model with gamma; approx.-1.4. We adopt the
view of Turner and Forbes (1982) that the SFR ON 2 is physically associated
with the massive star cluster Berkeley 87 hosting the WO type star WR 142. We
discuss different explanations for the apparently diffuse X-ray emission in
these SFRs. These include synchrotron radiation, invoked by the co-existence of
strongly shocked stellar winds and turbulent magnetic fields in the
star-forming complex, cluster wind emission, or an unresolved population of
discrete sources.Comment: ApJ 2010, 712, 763. Reduced fig. resolution. Full resolution version
is at
http://www.astro.physik.uni-potsdam.de/research/abstracts/oskinova-ber87.htm
Coexisting conical bipolar and equatorial outflows from a high-mass protostar
The BN/KL region in the Orion molecular cloud is an archetype in the study of
the formation of stars much more massive than the Sun. This region contains
luminous young stars and protostars, but it is difficult to study because of
overlying dust and gas. Our basic expectations are shaped to some extent by the
present theoretical picture of star formation, the cornerstone of which is that
protostars acrete gas from rotating equatorial disks, and shed angular momentum
by ejecting gas in bipolar outflows. The main source of the outflow in the
BN/KL region may be an object known as radio source I, which is commonly
believed to be surrounded by a rotating disk of molecular material. Here we
report high-resolution observations of silicon monoxide (SiO) and water maser
emission from the gas surrounding source I; we show that within 60 AU (about
the size of the Solar System), the region is dominated by a conical bipolar
outflow, rather than the expected disk. A slower outflow, close to the
equatorial plane of the protostellar system, extends to radii of 1,000 AU.Comment: 10 pages, 2 figures. Accepted by Nature. To appear December 199
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Milestones in the Observations of Cosmic Magnetic Fields
Magnetic fields are observed everywhere in the universe. In this review, we
concentrate on the observational aspects of the magnetic fields of Galactic and
extragalactic objects. Readers can follow the milestones in the observations of
cosmic magnetic fields obtained from the most important tracers of magnetic
fields, namely, the star-light polarization, the Zeeman effect, the rotation
measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio
polarization observations, as well as the newly implemented sub-mm and mm
polarization capabilities.
(Another long paragraph is omitted due to the limited space here)Comment: Invited Review (ChJA&A); 32 pages. Sorry if your significant
contributions in this area were not mentioned. Published pdf & ps files (with
high quality figures) now availble at http://www.chjaa.org/2002_2_4.ht
Independent variation of avian sensitivity to climate change and trait-based adaptive capacity along a tropical elevational gradient
Independent variation of avian sensitivity to climate change and trait-based adaptive capacity along a tropical elevational gradient
Ecosystem restoration strengthens pollination network resilience and function.
Land degradation results in declining biodiversity and the disruption of ecosystem functioning worldwide, particularly in the tropics. Vegetation restoration is a common tool used to mitigate these impacts and increasingly aims to restore ecosystem functions rather than species diversity. However, evidence from community experiments on the effect of restoration practices on ecosystem functions is scarce. Pollination is an important ecosystem function and the global decline in pollinators attenuates the resistance of natural areas and agro-environments to disturbances. Thus, the ability of pollination functions to resist or recover from disturbance (that is, the functional resilience) may be critical for ensuring a successful restoration process. Here we report the use of a community field experiment to investigate the effects of vegetation restoration, specifically the removal of exotic shrubs, on pollination. We analyse 64 plant-pollinator networks and the reproductive performance of the ten most abundant plant species across four restored and four unrestored, disturbed mountaintop communities. Ecosystem restoration resulted in a marked increase in pollinator species, visits to flowers and interaction diversity. Interactions in restored networks were more generalized than in unrestored networks, indicating a higher functional redundancy in restored communities. Shifts in interaction patterns had direct and positive effects on pollination, especially on the relative and total fruit production of native plants. Pollinator limitation was prevalent at unrestored sites only, where the proportion of flowers producing fruit increased with pollinator visitation, approaching the higher levels seen in restored plant communities. Our results show that vegetation restoration can improve pollination, suggesting that the degradation of ecosystem functions is at least partially reversible. The degree of recovery may depend on the state of degradation before restoration intervention and the proximity to pollinator source populations in the surrounding landscape. We demonstrate that network structure is a suitable indicator for pollination quality, highlighting the usefulness of interaction networks in environmental management
- …
