19 research outputs found
Current applications of multiparameter flow cytometry in plasma cell disorders
Multiparameter flow cytometry (MFC) has become standard in the management of patients with plasma cell (PC) dyscrasias, and could be considered mandatory in specific areas of routine clinical practice. It plays a significant role during the differential diagnostic work-up because of its fast and conclusive readout of PC clonality, and simultaneously provides prognostic information in most monoclonal gammopathies. Recent advances in the treatment and outcomes of multiple myeloma led to the implementation of new response criteria, including minimal residual disease (MRD) status as one of the most relevant clinical endpoints with the potential to act as surrogate for survival. Recent technical progress led to the development of next-generation flow (NGF) cytometry that represents a validated, highly sensitive, cost-effective and widely available technique for standardized MRD evaluation, which also could be used for the detection of circulating tumor cells. Here we review current applications of MFC and NGF in most PC disorders including the less frequent solitary plasmocytoma, light-chain amyloidosis or Waldenström macroglobulinemia
Beyond the marrow:insights from comprehensive next-generation sequencing of extramedullary multiple myeloma tumors
Extramedullary multiple myeloma (EMM) is an aggressive form of multiple myeloma (MM). This study represents the most comprehensive next-generation sequencing analysis of EMM tumors (N = 14) to date, uncovering key molecular features and describing the tumor microenvironment. We observed the co-occurrence of 1q21 gain/amplification and MAPK pathway mutations in 79% of EMM samples, suggesting that these are crucial mutational events in EMM development. We also demonstrated that patients with mutated KRAS and 1q21 gain/amplification at the time of diagnosis have a significantly higher risk of EMM development (HR = 2.4, p = 0.011) using data from a large CoMMpass dataset. We identified downregulation of CXCR4 and enhanced cell proliferation, along with reduced expression of therapeutic targets (CD38, SLAMF7, GPRC5D, FCRH5), potentially explaining diminished efficacy of immunotherapy. Conversely, we identified significantly upregulated EZH2 and CD70 as potential future therapeutic options. For the first time, we report on the tumor microenvironment of EMM, revealing CD8+ T cells and NK cells as predominant immune effector cells using single-cell sequencing. Finally, this is the first longitudinal study in EMM revealing the molecular changes from the time of diagnosis to EMM relapse.</p
El perfil transcriptómico de la célula tumoral circulante (CTD) del mieloma múltiple: un nuevo modelo para comprender la diseminación de la enfermedad
CO-010
Introducción: El número de células tumorales circulantes (CTCs) predice el riesgo de transformación en mieloma múltiple (MM) asintomático, así como la supervivencia en MM activo. Datos recientes sugieren que, conforme el tumor progresa y el microambiente se vuelve más hipóxico, las células plasmáticas (CP) clonales pasan a la circulación sistémica favoreciendo la constante invasión de nuevas regiones en la médula ósea (MO). Habría que señalar que la frecuencia de las CTCs es típicamente baja, por lo que sería concebible que dicha diseminación del MM dependiera de unas pocas células con unas características únicas que inducirían su salida de la médula y la extensión de la enfermedad a través de la sangre periférica (SP). Esta hipótesis no ha sido demostrada hasta ahora debido a que el perfil transcriptómico de la CTC en el MM no ha sido investigado.
Objetivos: Determinar funciones moleculares específicas en las CTCs que permitan identificar eventos responsables de la diseminación del MM a través del flujo sanguíneo. ..
PS-122 Risk management of prescription and preparation of cytotoxic drugs in hospital pharmacies
PB2098 IDENTIFICATION OF NOVEL REGULATORS OF PLASMA CELLS MIGRATION IN MULTIPLE MYELOMA PATIENTS
Current applications of multiparameter flow cytometry in plasma cell disorders
Multiparameter flow cytometry (MFC) has become standard in the management of patients with plasma cell (PC) dyscrasias, and could be considered mandatory in specific areas of routine clinical practice. It plays a significant role during the differential diagnostic work-up because of its fast and conclusive readout of PC clonality, and simultaneously provides prognostic information in most monoclonal gammopathies. Recent advances in the treatment and outcomes of multiple myeloma led to the implementation of new response criteria, including minimal residual disease (MRD) status as one of the most relevant clinical endpoints with the potential to act as surrogate for survival. Recent technical progress led to the development of next-generation flow (NGF) cytometry that represents a validated, highly sensitive, cost-effective and widely available technique for standardized MRD evaluation, which also could be used for the detection of circulating tumor cells. Here we review current applications of MFC and NGF in most PC disorders including the less frequent solitary plasmocytoma, light-chain amyloidosis or Waldenström macroglobulinemia
