672 research outputs found
Service oriented interactive media (SOIM) engines enabled by optimized resource sharing
In the same way as cloud computing, Software as a Service (SaaS) and Content Centric Networking (CCN) triggered a new class of software architectures fundamentally different from traditional desktop software, service oriented networking (SON) suggests a new class of media engine technologies, which we call Service Oriented Interactive Media (SOIM) engines. This includes a new approach for game engines and more generally interactive media engines for entertainment, training, educational and dashboard applications. Porting traditional game engines and interactive media engines to the cloud without fundamentally changing the architecture, as done frequently, can enable already various advantages of cloud computing for such kinds of applications, for example simple and transparent upgrading of content and unified user experience on all end-user devices. This paper discusses a new architecture for game engines and interactive media engines fundamentally designed for cloud and SON. Main advantages of SOIM engines are significantly higher resource efficiency, leading to a fraction of cloud hosting costs. SOIM engines achieve these benefits by multilayered data sharing, efficiently handling many input and output channels for video, audio, and 3D world synchronization, and smart user session and session slot management. Architecture and results of a prototype implementation of a SOIM engine are discussed
Evaluator services for optimised service placement in distributed heterogeneous cloud infrastructures
Optimal placement of demanding real-time interactive applications in a distributed heterogeneous cloud very quickly results in a complex tradeoff between the application constraints and resource capabilities. This requires very detailed information of the various requirements and capabilities of the applications and available resources. In this paper, we present a mathematical model for the service optimization problem and study the concept of evaluator services as a flexible and efficient solution for this complex problem. An evaluator service is a service probe that is deployed in particular runtime environments to assess the feasibility and cost-effectiveness of deploying a specific application in such environment. We discuss how this concept can be incorporated in a general framework such as the FUSION architecture and discuss the key benefits and tradeoffs for doing evaluator-based optimal service placement in widely distributed heterogeneous cloud environments
A reference list of fish species for a heavily modified estuary and its tributaries: the River Schelde
The river Schelde is a basin that has seen an enormous anthropogenic impact over the last millenium. This report lists all freshwater and brackish water fish species currently recorded for the Schelde river
On the Feasibility of Using Current Data Centre Infrastructure for Latency-sensitive Applications
IEEE It has been claimed that the deployment of fog and edge computing infrastructure is a necessity to make high-performance cloud-based applications a possibility. However, there are a large number of middle-ground latency-sensitive applications such as online gaming, interactive photo editing and multimedia conferencing that require servers deployed closer to users than in globally centralised clouds but do not necessarily need the extreme low-latency provided by a new infrastructure of micro data centres located at the network edge, e.g. in base stations and ISP Points of Presence. In this paper we analyse a snapshot of today & #x0027;s data centres and the distribution of users around the globe and conclude that existing infrastructure provides a sufficiently distributed platform for middle-ground applications requiring a response time of . However, while placement and selection of edge servers for extreme low-latency applications is a relatively straightforward matter of choosing the closest, providing a high quality of experience for middle-ground latency applications that use the more widespread distribution of today & #x0027;s data centres, as we advocate in this paper, raises new management challenges to develop algorithms for optimising the placement of and the per-request selection between replicated service instances
Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms
The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
Service oriented networking
This paper introduces a new paradigm for service oriented networking being developed in the FUSION project(1). Despite recent proposals in the area of information centric networking, a similar treatment of services - where networked software functions, rather than content, are dynamically deployed, replicated and invoked - has received little attention by the network research community to date. Our approach provides the mechanisms required to deploy a replicated service instance in the network and to route client requests to the closest instance in an efficient manner. We address the main issues that such a paradigm raises including load balancing, resource registration, domain monitoring and inter-domain orchestration. We also present preliminary evaluation results of current work
Incidence and drug treatment of emotional distress after cancer diagnosis : a matched primary care case-control study
Notes This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.Peer reviewedPublisher PD
Pseudo Identities Based on Fingerprint Characteristics
This paper presents the integrated project TURBINE which is funded under the EU 7th research framework programme. This research is a multi-disciplinary effort on privacy enhancing technology, combining innovative developments in cryptography and fingerprint recognition. The objective of this project is to provide a breakthrough in electronic authentication for various applications in the physical world and on the Internet. On the one hand it will provide secure identity verification thanks to fingerprint recognition. On the other hand it will reliably protect the biometric data through advanced cryptography technology. In concrete terms, it will provide the assurance that (i) the data used for the authentication, generated from the fingerprint, cannot be used to restore the original fingerprint sample, (ii) the individual will be able to create different "pseudo-identities" for different applications with the same fingerprint, whilst ensuring that these different identities (and hence the related personal data) cannot be linked to each other, and (iii) the individual is enabled to revoke an biometric identifier (pseudo-identity) for a given application in case it should not be used anymore
- …
