5,500 research outputs found
39-K Bose-Einstein condensate with tunable interactions
We produce a Bose-Einstein condensate of 39-K atoms. Condensation of this
species with naturally small and negative scattering length is achieved by a
combination of sympathetic cooling with 87-Rb and direct evaporation,
exploiting the magnetic tuning of both inter- and intra-species interactions at
Feshbach resonances. We explore tunability of the self-interactions by studying
the expansion and the stability of the condensate. We find that a 39-K
condensate is interesting for future experiments requiring a weakly interacting
Bose gas.Comment: 5 page
Feshbach resonances in ultracold K(39)
We discover several magnetic Feshbach resonances in collisions of ultracold
K(39) atoms, by studying atom losses and molecule formation. Accurate
determination of the magnetic-field resonance locations allows us to optimize a
quantum collision model for potassium isotopes. We employ the model to predict
the magnetic-field dependence of scattering lengths and of near-threshold
molecular levels. Our findings will be useful to plan future experiments on
ultracold potassium atoms and molecules.Comment: 7 pages, 6 figure
Analysis of the absorption and emission spectra of U4+ in α-ThBr 4
The low temperature form α-ThBr4 has a scheelite structure I41/a in which the tetravalent uranium occupies the thorium site which is S4. Assuming that the ground state remains Γ 4 as in the β-ThBr4 form, the polarized absorption spectrum at 4.2 K shows that D2d is a good approximation. A peculiarity of this host is the exaltation of very numerous fluorescences of U4+ which permit to assign four Stark levels of the ground state 3H4 : Γ5 at 110 cm-1, Γ 1 at 473 cm-1, Γ1 at 623 cm-1 and Γ5 at 830 cm-1. 30 levels have been assigned and the crystal field parameters of U4+ (5f2) have been calculated in the D2d approximation : B20 = - 382, B40 = - 3 262, B44 = - 1734, B60 = - 851 and B64 = - 1828 cm-1. It is interesting to note that a small distortion in the scheelite structure of the α-ThBr4 compared with the zircon structure β-ThBr4 induces important changes in the crystal field parameters
Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy
The Dolomite Alps of northeastern Italy experience debris flows with great
frequency during the summer months. An ample supply of unconsolidated
material on steep slopes and a summer season climate regime characterized by
recurrent thunderstorms combine to produce an abundance of these destructive
hydro-geologic events. In the past, debris flow events have been studied
primarily in the context of their geologic and geomorphic characteristics.
The atmospheric contribution to these mass-wasting events has been limited
to recording rainfall and developing intensity thresholds for debris
mobilization. This study aims to expand the examination of atmospheric
processes that preceded both locally intense convective rainfall (LICR) and
debris flows in the Dolomite region. 500 hPa pressure level plots of
geopotential heights were constructed for a period of 3 days prior to
debris flow events to gain insight into the synoptic-scale processes which
provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG)
lightning flash data recorded at the meso-scale were incorporated to
assess the convective environment proximal to debris flow source regions.
Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at
smaller spatial and temporal scales illustrated that convective processes
vary in their production of CF flashes (total number) and the spatial
distribution of flashes can also be quite different between events over
longer periods. During the 60 min interval immediately preceding debris
flow a majority of cases exhibited spatial and temporal colocation of LICR
and CG flashes. Also a number of CG flash parameters were found to be
significantly correlated to rainfall intensity prior to debris flow initiation
Collisional properties of ultracold K-Rb mixtures
We determine the inter-species s-wave triplet scattering length a3 for all
K-Rb isotopic mixtures by measuring the cross-section for collisions between
41K and 87Rb in different temperature regimes. The positive value
a3=+163(+57,-12)a0 ensures the stability of binary 41K-87Rb Bose-Einstein
condensates. For the fermion-boson mixture 40K-87Rb we obtain a large and
negative scattering length which implies an efficient sympathetic cooling of
the fermionic species down to the degenerate regime.Comment: 4 pages, 4 figures; revised version (references added and small
changes
Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture
The route toward a Bose-Einstein condensate of dipolar molecules requires the
ability to efficiently associate dimers of different chemical species and
transfer them to the stable rovibrational ground state. Here, we report on
recent spectroscopic measurements of two weakly bound molecular levels and
newly observed narrow d-wave Feshbach resonances. The data are used to improve
the collisional model for the Bose-Bose mixture 41K87Rb, among the most
promising candidates to create a molecular dipolar BEC.Comment: 13 pages, 3 figure
Alternative structures and bi-Hamiltonian systems on a Hilbert space
We discuss transformations generated by dynamical quantum systems which are
bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an
infinite-dimensional complex Hilbert space. We introduce the notion of
Hermitian structures in generic relative position. We provide few necessary and
sufficient conditions for two Hermitian structures to be in generic relative
position to better illustrate the relevance of this notion. The group of
bi-unitary transformations is considered in both the generic and non-generic
case. Finally, we generalize the analysis to real Hilbert spaces and extend to
infinite dimensions results already available in the framework of
finite-dimensional linear bi-Hamiltonian systems.Comment: 11 page
Parametrization of 5f-5f Transition Probabilities Between Stark Levels of U 3+ in LiYF4
In order to simulate intensities of the 5f-5f transitions of U3+ in LiYF4, we applied the Judd-Ofelt theory. Because of the large crystal-field splitting of the J-multiplets in the actinides, a set of phenomenological intensity parameters Bλkq is introduced to describe the transition probabilities between the crystal-field sublevels of U3+. The intensities of the absorption transitions between the crystal field levels calculated and a set of six phenomenological intensity parameters give a rather good simulation of the experimental intensities, and the applicability of the Judd-Ofelt theory is discussed for the 5f→ 5f transitions of the actinides. From these values, the oscillator strengths between the excited states involved in the laser transition 4I11/2→4I9/2 are calculated and the corresponding radiative lifetime is compared to the experimental one. Moreover, a comparison between the actinide ion U3+ (5f3) and the lanthanide ions Nd3+ (4f3) and Er3+ (4f11) in LiYF4 is made
Feynman problem in the noncommutative case
In the context of the Feynman's derivation of electrodynamics, we show that
noncommutativity allows other particle dynamics than the standard formalism of
electrodynamics.Comment: latex, 7 pages, no figure
- …
