717 research outputs found

    Strongly Scale-dependent Non-Gaussianity

    Full text link
    We discuss models of primordial density perturbations where the non-Gaussianity is strongly scale-dependent. In particular, the non-Gaussianity may have a sharp cut-off and be very suppressed on large cosmological scales, but sizeable on small scales. This may have an impact on probes of non-Gaussianity in the large-scale structure and in the cosmic microwave background radiation anisotropies.Comment: 4 page

    Energy technology for transport

    Get PDF

    Cosmological diagrammatic rules

    Full text link
    A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.Comment: 7 pages, 3 figure

    de Sitter limit of inflation and nonlinear perturbation theory

    Full text link
    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gauge, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the n'th order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function.Comment: 14 pages, 1 figure; typos corrected and discussion of tensor modes adde

    Tracking Curvaton(s)?

    Full text link
    The ratio of the curvaton energy density to that of the dominant component of the background sources may be constant during a significant period in the evolution of the Universe. The possibility of having tracking curvatons, whose decay occurs prior to the nucleosynthesis epoch, is studied. It is argued that the tracking curvaton dynamics is disfavoured since the value of the curvature perturbations prior to curvaton decay is smaller than the value required by observations. It is also argued, in a related context, that the minimal inflationary curvature scale compatible with the curvaton paradigm may be lowered in the case of low-scale quintessential inflation.Comment: 20 pages, 4figure

    MSSM curvaton in the gauge-mediated SUSY breaking

    Full text link
    We study the curvaton scenario using the MSSM flat directions in the gauge-mediated SUSY breaking model. We find that the fluctuations in the both radial and phase directions can be responsible for the density perturbations in the universe through the curvaton mechanism. Although it has been considered difficult to have a successful curvaton scenario with the use of those flat directions, it is overcome by taking account of the finite temperature effects, which induce a negative thermal logarithmic term in the effective potential of the flat direction.Comment: 12 page

    Enhancing the tensor-to-scalar ratio in simple inflation

    Full text link
    We show that in theories with a nontrivial kinetic term the contribution of the gravitational waves to the CMB fluctuations can be substantially larger than that is naively expected in simple inflationary models. This increase of the tensor-to-scalar perturbation ratio leads to a larger B-component of the CMB polarization, thus making the prospects for future detection much more promising. The other important consequence of the considered model is a higher energy scale of inflation and hence higher reheating temperature compared to a simple inflation.Comment: 9 pages, 1 figure and references are added, discussion is slightly extended, published versio
    corecore