772 research outputs found

    Terahertz Time-Domain Magnetospectroscopy of a High-Mobility Two-Dimensional Electron Gas

    Full text link
    We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility (>106cm2V1s1>{10}^{6} \mathrm{cm^{2} V^{-1} s^{-1}}) sample without being affected by the saturation effect.Comment: 4 pages, 3 figure

    Early Scottish Monasteries and Prehistory: A Preliminary Dialogue

    Get PDF
    Reflecting oil the diversity of monastic attributes found in the east and west of Britain, the author proposes that prehistoric ritual practice was influential on monastic form. An argument is advanced that this was not based solely oil inspiration Front the landscape, nor oil conservative tradition, but oil the intellectual reconciliation of Christian and non-Christian ideas, with disparate results that account. for the differences in monumentality. Among more general matters tentatively credited with a prehistoric root are the cult of relics, the tonsure and the date of Easter

    Dielectric and conductivity relaxation in mixtures of glycerol with LiCl

    Full text link
    We report a thorough dielectric characterization of the alpha relaxation of glass forming glycerol with varying additions of LiCl. Nine salt concentrations from 0.1 - 20 mol% are investigated in a frequency range of 20 Hz - 3 GHz and analyzed in the dielectric loss and modulus representation. Information on the dc conductivity, the dielectric relaxation time (from the loss) and the conductivity relaxation time (from the modulus) is provided. Overall, with increasing ion concentration, a transition from reorientationally to translationally dominated behavior is observed and the translational ion dynamics and the dipolar reorientational dynamics become successively coupled. This gives rise to the prospect that by adding ions to dipolar glass formers, dielectric spectroscopy may directly couple to the translational degrees of freedom determining the glass transition, even in frequency regimes where usually strong decoupling is observed.Comment: 8 pages, 7 figure

    Flavour Symmetries and Kahler Operators

    Full text link
    Any supersymmetric mechanism to solve the flavour puzzle would generate mixing both in the superpotential Yukawa couplings and in the Kahler potential. In this paper we study, in a model independent way, the impact of the nontrivial structure of the Kahler potential on the physical mixing matrix, after kinetic terms are canonically normalized. We undertake this analysis both for the quark sector and the neutrino sector. For the quark sector, and in view of the experimental values for the masses and mixing angles, we find that the effects of canonical normalization are subdominant. On the other hand, for the leptonic sector we obtain different conclusions depending on the spectrum of neutrinos. In the hierarchical case we obtain similar conclusion as in the quark sector, whereas in the degenerate and inversely hierarchical case, important changes in the mixing angles could be expected.Comment: 22 pages, LaTe

    Generalized stochastic Schroedinger equations for state vector collapse

    Get PDF
    A number of authors have proposed stochastic versions of the Schr\"odinger equation, either as effective evolution equations for open quantum systems or as alternative theories with an intrinsic collapse mechanism. We discuss here two directions for generalization of these equations. First, we study a general class of norm preserving stochastic evolution equations, and show that even after making several specializations, there is an infinity of possible stochastic Schr\"odinger equations for which state vector collapse is provable. Second, we explore the problem of formulating a relativistic stochastic Schr\"odinger equation, using a manifestly covariant equation for a quantum field system based on the interaction picture of Tomonaga and Schwinger. The stochastic noise term in this equation can couple to any local scalar density that commutes with the interaction energy density, and leads to collapse onto spatially localized eigenstates. However, as found in a similar model by Pearle, the equation predicts an infinite rate of energy nonconservation proportional to δ3(0)\delta^3(\vec 0), arising from the local double commutator in the drift term.Comment: 24 pages Plain TeX. Minor changes, some new references. To appear in Journal of Physics

    Motional Squashed States

    Full text link
    We show that by using a feedback loop it is possible to reduce the fluctuations in one quadrature of the vibrational degree of freedom of a trapped ion below the quantum limit. The stationary state is not a proper squeezed state, but rather a ``squashed'' state, since the uncertainty in the orthogonal quadrature, which is larger than the standard quantum limit, is unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum Correlations and Fluctuations" of J. Opt.

    Phase space geometry and slow dynamics

    Full text link
    We describe a non-Arrhenius mechanism for slowing down of dynamics that is inherent to the high dimensionality of the phase space. We show that such a mechanism is at work both in a family of mean-field spin-glass models without any domain structure and in the case of ferromagnetic domain growth. The marginality of spin-glass dynamics, as well as the existence of a `quasi equilibrium regime' can be understood within this scenario. We discuss the question of ergodicity in an out-of equilibrium situation.Comment: 23 pages, ReVTeX3.0, 6 uuencoded postscript figures appende

    Spreadsheets for Analyzing and Optimizing Space Missions

    Get PDF
    XCALIBR (XML Capability Analysis LIBRary) is a set of Extensible Markup Language (XML) database and spreadsheet- based analysis software tools designed to assist in technology-return-on-investment analysis and optimization of technology portfolios pertaining to outer-space missions. XCALIBR is also being examined for use in planning, tracking, and documentation of projects. An XCALIBR database contains information on mission requirements and technological capabilities, which are related by use of an XML taxonomy. XCALIBR incorporates a standardized interface for exporting data and analysis templates to an Excel spreadsheet. Unique features of XCALIBR include the following: It is inherently hierarchical by virtue of its XML basis. The XML taxonomy codifies a comprehensive data structure and data dictionary that includes performance metrics for spacecraft, sensors, and spacecraft systems other than sensors. The taxonomy contains >700 nodes representing all levels, from system through subsystem to individual parts. All entries are searchable and machine readable. There is an intuitive Web-based user interface. The software automatically matches technologies to mission requirements. The software automatically generates, and makes the required entries in, an Excel return-on-investment analysis software tool. The results of an analysis are presented in both tabular and graphical displays

    Warped Reheating in Multi-Throat Brane Inflation

    Full text link
    We investigate in some quantitative details the viability of reheating in multi-throat brane inflationary scenarios by estimating and comparing the time scales for the various processes involved. We also calculate within perturbative string theory the decay rate of excited closed strings into KK modes and compare with that of their decay into gravitons; we find that in the inflationary throat the former is preferred. We also find that over a small but reasonable range of parameters of the background geometry, these KK modes will preferably tunnel to another throat (possibly containing the Standard Model) instead of decaying to gravitons due largely to their suppressed coupling to the bulk gravitons. Once tunneled, the same suppressed coupling to the gravitons again allows them to reheat the Standard Model efficiently. We also consider the effects of adding more throats to the system and find that for extra throats with small warping, reheating still seems viable.Comment: 29 pages, 4 figures, discussions on closed string decay expanded, references adde

    DBI Inflation in the Tip Region of a Warped Throat

    Get PDF
    Previous work on DBI inflation, which achieves inflation through the motion of a D3D3 brane as it moves through a warped throat compactification, has focused on the region far from the tip of the throat. Since reheating and other observable effects typically occur near the tip, a more detailed study of this region is required. To investigate these effects we consider a generalized warp throat where the warp factor becomes nearly constant near the tip. We find that it is possible to obtain 60 or more e-folds in the constant region, however large non-gaussianities are typically produced due to the small sound speed of fluctuations. For a particular well-studied throat, the Klebanov-Strassler solution, we find that inflation near the tip may be generic and it is difficult to satisfy current bounds on non-gaussianity, but other throat solutions may evade these difficulties.Comment: 26 pages, 1 figure. v1. references added, typos corrected v2. clarifications mad
    corecore