1,275 research outputs found
Low-temperature specific heat for ferromagnetic and antiferromagnetic orders in CaRu1-xMnxO3
Low-temperature specific heat of CaRu1-xMnxO3 was measured to clarify the
role of d electrons in ferromagnetic and antiferromagnetic orders observed
above x=0.2. Specific heat divided by temperature C_p/T is found to roughly
follow a T^2 function, and relatively large magnitudes of electronic specific
heat coefficient gamma were obtained in wide x range. In particular, gamma is
unchanged from the value at x=0 (84 mJ/K^2 mol) in the paramagnetic state for
x<=0.1, but linearly reduced with increasing x above x= 0.2. These features of
gamma strongly suggest that itinerant d electrons are tightly coupled with the
evolution of magnetic orders in small and intermediate Mn concentrations.Comment: 4 pages, 2 figures, to be published in J. Phys.: Conf. Ser. (SCES
2011, Cambridge, UK
Tactile Sensors Based on Conductive Polymers
This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive mate¬rial. Specifically, a conductive water-based ink of this polymer is deposited by spin coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The main interest in this procedure is that it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work we present results from sensors made using two technologies. Firstly, we have used a flexible Printed Circuit Board (PCB) technology to fabricate the set of electrodes and addressing tracks. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with screen printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. The intense characterization provides us insights into the design of these tactile sensors.This work has been partially funded by the spanish government under contract TEC2006-12376-C02
Excitons in T-shaped quantum wires
We calculate energies, oscillator strengths for radiative recombination, and
two-particle wave functions for the ground state exciton and around 100 excited
states in a T-shaped quantum wire. We include the single-particle potential and
the Coulomb interaction between the electron and hole on an equal footing, and
perform exact diagonalisation of the two-particle problem within a finite basis
set. We calculate spectra for all of the experimentally studied cases of
T-shaped wires including symmetric and asymmetric GaAs/AlGaAs and
InGaAs/AlGaAs structures. We study in detail the
shape of the wave functions to gain insight into the nature of the various
states for selected symmetric and asymmetric wires in which laser emission has
been experimentally observed. We also calculate the binding energy of the
ground state exciton and the confinement energy of the 1D quantum-wire-exciton
state with respect to the 2D quantum-well exciton for a wide range of
structures, varying the well width and the Al molar fraction . We find that
the largest binding energy of any wire constructed to date is 16.5 meV. We also
notice that in asymmetric structures, the confinement energy is enhanced with
respect to the symmetric forms with comparable parameters but the binding
energy of the exciton is then lower than in the symmetric structures. For
GaAs/AlGaAs wires we obtain an upper limit for the binding energy
of around 25 meV in a 10 {\AA} wide GaAs/AlAs structure which suggests that
other materials must be explored in order to achieve room temperature
applications. There are some indications that
InGaAs/AlGaAs might be a good candidate.Comment: 20 pages, 10 figures, uses RevTeX and psfig, submitted to Physical
Review
Shape-independent scaling of excitonic confinement in realistic quantum wires
The scaling of exciton binding energy in semiconductor quantum wires is
investigated theoretically through a non-variational, fully three-dimensional
approach for a wide set of realistic state-of-the-art structures. We find that
in the strong confinement limit the same potential-to-kinetic energy ratio
holds for quite different wire cross-sections and compositions. As a
consequence, a universal (shape- and composition-independent) parameter can be
identified that governs the scaling of the binding energy with size. Previous
indications that the shape of the wire cross-section may have important effects
on exciton binding are discussed in the light of the present results.Comment: To appear in Phys. Rev. Lett. (12 pages + 2 figures in postscript
Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A
Suzaku X-ray observations of a young supernova remnant, Cassiopeia A, were
carried out. K-shell transition lines from highly ionized ions of various
elements were detected, including Chromium (Cr-Kalpha at 5.61 keV). The X-ray
continuum spectra were modeled in the 3.4--40 keV band, summed over the entire
remnant, and were fitted with a simplest combination of the thermal
bremsstrahlung and the non-thermal cut-off power-law models. The spectral fits
with this assumption indicate that the continuum emission is likely to be
dominated by the non-thermal emission with a cut-off energy at > 1 keV. The
thermal-to-nonthermal fraction of the continuum flux in the 4-10 keV band is
best estimated as ~0.1. Non-thermal-dominated continuum images in the 4--14 keV
band were made. The peak of the non-thermal X-rays appears at the western part.
The peak position of the TeV gamma-rays measured with HEGRA and MAGIC is also
shifted at the western part with the 1-sigma confidence. Since the location of
the X-ray continuum emission was known to be presumably identified with the
reverse shock region, the possible keV-TeV correlations give a hint that the
accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements
in the reverse shock region.Comment: Publ. Astron. Soc. Japan 61, pp.1217-1228 (2009
Gain in a quantum wire laser of high uniformity
A multi-quantum wire laser operating in the 1-D ground state has been
achieved in a very high uniformity structure that shows free exciton emission
with unprecedented narrow width and low lasing threshold. Under optical pumping
the spontaneous emission evolves from a sharp free exciton peak to a
red-shifted broad band. The lasing photon energy occurs about 5 meV below the
free exciton. The observed shift excludes free excitons in lasing and our
results show that Coulomb interactions in the 1-D electron-hole system shift
the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe
PICK1 is not a susceptibility gene for schizophrenia in a Japanese population: Association study in a large case–control population
The protein interacting with C-kinase 1 (PICK1) has been implicated in thesusceptibility to schizophrenia. PICK1 interacts with enzymes and receptors that playroles in the pathogenesis of schizophrenia via glutamatergic dysfunction. Recently, twostudies reported associations between schizophrenia and two PICK1 genepolymorphisms, rs3952 in Chinese and Japanese populations and rs2076369 in aJapanese population. We attempted to confirm these associations in a case-control studyof 1765 Japanese patients with schizophrenia and 1851 Japanese control subjects.Neither polymorphism was associated with schizophrenia (rs3952, p = 0.755;rs2076369, p = 0.997). A haplotype block with these polymorphisms spanning the 5’region of the PICK1 gene showed high linkage disequilibrium in the Japanesepopulation (D’ = 0.98, r2 = 0.34); however, neither haplotype was significantlyassociated with schizophrenia. We conclude that the common haplotypes andpolymorphisms of the PICK1 gene identified thus far are unlikely to contribute togenetic susceptibility to schizophrenia in the Japanese population
- …
