19 research outputs found
Essential oils from leaves of cryptocarya spp from the atlantic rain forest
The essential oils from leaves of four Cryptocarya spp endemic in the Brazilian Atlantic rain forest were obtained by hydrodistillation and shown by GC-MS analysis to contain mono and sesquiterpenes. The major components of the oil of Cryptocarya moschata were linalool (34.3%), a-terpinene (17.0%), g-terpinene (10.4%), 1,8-cineole (5.8%) and trans-ocimene (4.8%), whilst those of C. botelhensis were a-pinene (22.7%), b-pinene (9.2%), trans-verbenol (8.4%), trans-pinocarveol (5.5%) and myrtenal (5.4%). The principal compounds of C. mandioccana oil were b-caryophyllene (13.8%), spathulenol (10.2%), caryophyllene oxide (7.8%), d-cadinene (6.9%) and bicyclogermacrene (6.4%), whilst those of C. saligna were germacrene D (15.5%), bicyclogermacrene (13.8%), spathulenol (11.8%) and germacrene B (5.7%)
Essential oils from leaves of cryptocarya spp from the atlantic rain forest
The essential oils from leaves of four Cryptocarya spp endemic in the Brazilian Atlantic rain forest were obtained by hydrodistillation and shown by GC-MS analysis to contain mono and sesquiterpenes. The major components of the oil of Cryptocarya moschata were linalool (34.3%), a-terpinene (17.0%), g-terpinene (10.4%), 1,8-cineole (5.8%) and trans-ocimene (4.8%), whilst those of C. botelhensis were a-pinene (22.7%), b-pinene (9.2%), trans-verbenol (8.4%), trans-pinocarveol (5.5%) and myrtenal (5.4%). The principal compounds of C. mandioccana oil were b-caryophyllene (13.8%), spathulenol (10.2%), caryophyllene oxide (7.8%), d-cadinene (6.9%) and bicyclogermacrene (6.4%), whilst those of C. saligna were germacrene D (15.5%), bicyclogermacrene (13.8%), spathulenol (11.8%) and germacrene B (5.7%).503507Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum
Piper gaudichaudianum Kunth: Seasonal Characterization of the Essential Oil Chemical Composition of Leaves and Reproductive Organs
Composição química e atividade biológica dos óleos essenciais das folhas e caules de Rhodostemonodaphne parvifolia Madriñán (Lauraceae)
Seasonal influence on the essential oil production of Nectandra megapotamica (Spreng.) Mez
Assessment of Commercial Active Ceramic Tiles on Benzene Degradation for the Pollution Control of Indoor Atmospheric Buildings
Volatile Organic Compounds (VOCs) constitutes an important class of air pollutants, and benzene is one of the main contaminants of indoor air pollution. Among the methods for the treatment of environments with a high VOCs concentration is the photocatalytic oxidation by TiO2 (anatase) ceramic coated surfaces. The effectiveness of VOCs photodegradation studies using active ceramic tiles made in laboratory is well reported in the literature. However, this has not been reported using commercial tiles, although active ceramics are sold for such a function. In this context, this study proposed the assessment of commercial active ceramic tiles capacity in the photocatalytic degradation of benzene in indoor air. The development of this work arose from two questions: a) if the commercial active ceramic tiles are efficient in the VOCs degradation as the manufacturers claim; b) if they are able to degrade VOCs in indoor building environments. Experiments were conducted in laboratory’s scale, using an adapted simulation chamber. The volatilized benzene entered in contact with the commercial ceramic tile under fluorescent light and ultraviolet (UV) light of 365 nm. Samples of the chamber internal air were collected by adsorption on polydimethylsiloxane fibres in headspace technique (SPME-HS). The evaluation of the benzene degradation occurred by gas chromatography analysis with mass spectrometry (GC-MS). The characterization of commercial active ceramic samples occurred by techniques of X-Ray Diffraction Powder (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometry (EDS). Results showed that, under the experimental conditions, the commercial active ceramic tile was not capable of the benzene photocatalytic oxidation. The ceramic characterization detected very low quantity of TiO2 on ceramic samples, being this fact attributed as the main responsible for the ceramic photocatalytic inactiveness.</jats:p
Essential oil from leaves of Cryptocarya mandioccana Meisner (Lauraceae): Composition and intraspecific chemical variability
The composition of the essential oil from leaves of Cryptocarya mandioccana has been determined by chromatographic fractionation and GC-FID, GC-MS and C-13 NMR analyses, yielding the identification of 64 compounds with predominance of isomeric sesquiterpenes with molecular weights of 204. The main components of the oil obtained by hydrodistillation were beta-caryophyllene, spathulenol, caryophyllene oxide, delta-cadinene, germacrene D, benzaldehyde and bicyclogermacrene. However, the oil obtained by steam distillation contained higher levels of sesquiterpene hydrocarbons, with predominance of P-caryophyllene (C), germacrene D (G) and bicyclogermacrene (B), and was considered to be more representative of the composition of the oil in its natural state. The intraspecific chemical variability of the essential oil obtained by steam distillation was evaluated within populations of trees growing at three separate locations in the state of Sao Paulo, Brazil. Three distinct chemical groups could be characterised due to differences in the relative percentages of the three main sesquiterpenes from essential oil: CGB [relative contents of C (14-34%), G (5-28%), B (8-15%)], BCG [B (17-34%), C (9-24%), G (12-25%)] and GCB [G (22-42%), C (4-17%), B (7-15%)]. Individuals from groups CGB and BCG were found to be more frequent at south locations while group GCB is predominant in north location. (c) 2006 Elsevier Ltd. All rights reserved.35422223
Flavored Drink Production Using Broken Rice: Evaluation of Physical-Chemical Properties and Power Consumption of Industrial Stirring System
The industrial rice processing generates, in average, 14% of broken grains called grits, which are not well accepted by consumers, representing large economic loss. Researches have been conducted to increase the use of rice by-products as well as their benefit. Among them, beverages are attracting the attention, being develop. To contribute to this field, this study aimed to prepare a non-alcoholic flavored drink from rice grits; evaluate the physical-chemical properties and evaluate de power consumption of stirring system for the drink industrial production. The drink production involved the cooking of the rice grits, followed by crushing, homogenization, filtration and flavorization in a stirring tank, obtaining the final product for consumption. The power consumption calculation for mixing tanks was evaluated in three different situations at 25ºC, considering the pre-defined tank design and the drink characteristics. Results based on the physicochemical characteristics indicate that the rice flavored drink is a food alternative to substitute milk or soy extract drinks. On the industrial production aspects, the increasing in the consumed energy to the small stirring variations was observed, and it needs to be considered to the stirring equipment design in the industrial process.</jats:p
Use of a cashew nut shell liquid resin as a potential replacement for phenolic resins in the preparation of panels - a review
The Cashew Nut Shell Liquid (CNSL) can be considered as a versatile raw material with wide applications in the form of surface coatings, paints and varnishes, as well as the production of polymers. Within this context, the chemical constituents of CNSL (anarcadic acid, cardanol, 2-cardol and methylcardol) become promising in the development of new materials components. Once separated, CNSL can be used in the research and development of additives, surfactants, pharmaceuticals, pesticides, polymers, resins and others. Being a byproduct, CNSL used in the preparation of new materials is characterized as a truly technological innovation
