770 research outputs found
Absorption of sound in air below 1000 cps
Absorption of sound in air measured for varying conditions of pressure, temperature, and humidit
Barrier dynamics in disaster risk reduction: storm impacts and recovery assessment from remote sensing
Metazoan-protozoan parasite co-infections and host body weight in St Kilda Soay sheep
For hundreds of years, the unmanaged Soay sheep population on St Kilda has survived despite enduring presumably deleterious co-infections of helminth, protozoan and arthropod parasites and intermittent periods of starvation. Important parasite taxa in young Soay sheep are strongyles (Trichostrongylus axei, Trichostrongylus vitrinus and Teladorsagia circumcincta), coccidia (11 Eimeria species) and keds (Melophagus ovinus) and in older animals, Teladorsagia circumcincta. In this research, associations between the intensity of different parasite taxa were investigated. Secondly, the intensities of different parasite taxa were tested for associations with variation in host weight, which is itself a determinant of over-winter survival in the host population. In lambs, the intensity of strongyle eggs was positively correlated with that of Nematodirus spp. eggs, while in yearlings and adults strongyle eggs and coccidia oocysts were positively correlated. In lambs and yearlings, of the parasite taxa tested, only strongyle eggs were significantly and negatively associated with host weight. However, in adult hosts, strongyles and coccidia were independently and negatively associated with host weight. These results are consistent with the idea that strongyles and coccidia are exerting independent selection on Soay sheep.</p
Multicolour interphase cytogenetics: 24 chromosome probes, 6 colours, 4 layers
From the late 1980s onwards, the use of DNA probes to visualise sequences on individual chromosomes (fluorescent in-situ hybridisation - FISH) revolutionised the study of cytogenetics. Following single colour experiments, more fluorochromes were added, culminating in a 24 colour assay that could distinguish all human chromosomes. Interphase cytogenetics (the detection of chromosome copy number in interphase nuclei) soon followed, however 24 colour experiments are hampered for this application as mixing fluorochromes to produce secondary colours produces images that are not easily distinguishable from overlapping signals. This study reports the development and use of a novel protocol, new fast hybridising FISH probes, and a bespoke image capture system for the assessment of chromosome copy number in interphase nuclei. The multicolour probe sets can be used individually or in sequential hybridisation layers to assess ploidy of all 24 human chromosomes in the same nucleus. Applications of this technique are in the investigation of chromosome copy number and the assessment of nuclear organisation for a range of different cell types including human sperm, cancer cells and preimplantation embryos
Growing old in England: economic and social issues
This paper examines the economic and social impact of changes in the duration of working life for the 80 per cent of older adults living in urban England. While some people are experiencing extended retirement because of moving out of paid work in their fifties, a growing minority of those beyond the state retirement age continue in paid employment. This paper highlights the considerable challenges for urban policy makers in addressing the economic and social inclusion of all older adults
Recommended from our members
Sediment structure and physicochemical changes following tidal inundation at a large open coast managed realignment site
Managed realignment (MR) schemes are being implemented to compensate for the loss of intertidal saltmarsh habitats by breaching flood defences and inundating the formerly defended coastal hinterland. However, studies have shown that MR sites have lower biodiversity than anticipated, which has been linked with anoxia and poor drainage resulting from compaction and the collapse of sediment pore space caused by the site's former terrestrial land use. Despite this proposed link between biodiversity and soil structure, the evolution of the sediment sub-surface following site inundation has rarely been examined, particularly over the early stages of the terrestrial to marine or estuarine transition. This paper presents a novel combination of broad- and intensive-scale analysis of the sub-surface evolution of the Medmerry Managed Realignment Site (West Sussex, UK) in the three years following site inundation. Repeated broad-scale sediment physiochemical datasets are analysed to assess the early changes in the sediment subsurface and the preservation of the former terrestrial surface, comparing four locations of different former land uses. Additionally, for two of these locations, high-intensity 3D-computed X-ray microtomography and Itrax micro-X-ray fluorescence spectrometry analyses are presented. Results provide new data on differences in sediment properties and structure related to the former land use, indicating that increased agricultural activity leads to increased compaction and reduced porosity. The presence of anoxic conditions, indicative of poor hydrological connectivity between the terrestrial and post-inundation intertidal sediment facies, was only detected at one site. This site has experienced the highest rate of accretion over the terrestrial surface (ca. 7 cm over 36 months), suggesting that poor drainage is caused by the interaction (or lack of) between sediment facies rather than the former land use. This has significant implications for the design of future MR sites in terms of preparing sites, their anticipated evolution, and the delivery of ecosystem services
Evolutionary tradeoffs in cellular composition across diverse bacteria
One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components
THE PRODUCTIVITY AND EFFICIENCY OF BORDER LEICESTER X CHEVIOT, FINN X BLACFACE AND EAST FRIESLAND X BLACKFACE PROLIFIC CROSS-BRED EWES FOR LAMB AND CARCASS MEAT PRODUCTION IN ENGLAND
Structure of the met protein and variation of met protein kinase activity among human tumour cell lines.
An in vitro autophosphorylation assay has been used to demonstrate that there is considerable variation in met associated protein kinase among human tumour cell lines. Of particular note was the very high level of autophosphorylation of the 140 kD met protein (p140met) in experiments with A431 human cervical carcinoma cells. In contrast in experiments with Daoy human medulloblastoma cells we failed to detect phosphorylation of p140met; instead a high level of phosphorylation of a 132 kD protein was observed. To help understand the basis for the variation in kinase activity and to learn more about the structure of the mature met protein we have analysed p140met in SDS-polyacrylamide gels under non-reducing conditions. Under these conditions the met protein had an apparent molecular weight of 165,000 indicating that the mature met protein may exist as an alpha beta complex in which p140met (designated the beta subunit) is joined by disulphide bonds to a smaller, 25 kD, alpha-chain. We have identified a potential proteolytic cleavage site with the sequence Lys-Arg-Lys-Lys-Arg-Ser at amino acids 303-308 in the human met protein that may account for cleavage of the met protein into alpha and beta subunits
- …
