1,343 research outputs found

    Electron-Rich Arene–Ruthenium Metalla-architectures Incorporating Tetrapyridyl–Tetrathiafulvene Donor Moieties

    Get PDF
    International audienceA series of arene ruthenium architectures have been prepared from coordination-driven self-assembly using dinuclear p-cymene ruthenium acceptors and π-donating tetratopic tetrapyridyl–tetrathiafulvalene donor ligands. The synthetic strategy, based on a geometric interaction approach, leads to four electroactive metalla-assemblies, 1–4 (one molecular cube and three metallaplates), that were characterized by NMR, ESI-MS, X-ray diffraction, and cyclic voltammetry. Rationalization of their formation discrepancy was completed by DFT calculations supported by structural features of their constituting TTF and Ru-complex components. Metalla-architectures possessing electron-rich cores (3, cis-4, and trans-4) interact strongly with picric acid (PA) to yield cocrystallized products, PA + metalla-assemblies, confirmed by single-crystal X-ray structure analyses

    SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1

    Get PDF
    BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity

    Chirality at two-dimensional surfaces: A perspective from small molecule alcohol assembly on Au(111)

    Full text link
    The delicate balance between H-bonding and van der Waals interactions determine the stability,structure and chirality of many molecular and supramolecular aggregates weakly adsorbed on solid surfaces.Yet the inherent complexity of these systems makes their experimental study at the molecular level very challenging.Small alcohols adsorbed on metal surfaces have become a useful model system to gain fundamental insight into the interplay of such molecule-surface and molecule-molecule interactions.Here, through a combination of scanning tunneling microscopy and density functional theory,we compare and contrast the adsorption and self-assembly of a range of small alcohols from methanol to butanol on Au(111).We find that that longer chained alcohols prefer to form zigzag chains held together by extended H-bonded networks between adjacent molecules.When alcohols bind to a metal surface datively via one of the two lone electron pairs of the oxygen atom they become chiral.Therefore,the chain structures are formed by a H-bonded network between adjacent molecules with alternating adsorbed chirality.These chain structures accommodate longer alkyl tails through larger unit cells, while the position of the hydroxyl group within the alcohol molecule can produce denser unit cells that maximize intermolecular interactions.Interestingly,when intrinsic chirality is introduced into the molecule as in the case of 2-butanol the assembly changes completely and square packing structures with chiral pockets are observed. This is rationalized by the fact that the intrinsic chirality of the molecule directs the chirality of the adsorbed hydroxyl group meaning that heterochiral chain structures cannot form.Overall this study provides a general framework for understanding the effect of simple alcohol molecular adstructures on H-bonded aggregates and paves the way for rationalizing 2D chiral supramolecular assembly

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Proteomic profile of KSR1-regulated signalling in response to genotoxic agents in breast cancer

    Get PDF
    Kinase suppressor of Ras 1 (KSR1) has been implicated in tumorigenesis in multiple cancers, including skin, pancreatic and lung carcinomas. However, our recent study revealed a role of KSR1 as a tumour suppressor in breast cancer, the expression of which is potentially correlated with chemotherapy response. Here, we aimed to further elucidate the KSR1-regulated signalling in response to genotoxic agents in breast cancer. Stable isotope labelling by amino acids in cell culture (SILAC) coupled to high-resolution mass spectrometry (MS) was implemented to globally characterise cellular protein levels induced by KSR1 in the presence of doxorubicin or etoposide. The acquired proteomic signature was compared and GO-STRING analysis was subsequently performed to illustrate the activated functional signalling networks. Furthermore, the clinical associations of KSR1 with identified targets and their relevance in chemotherapy response were examined in breast cancer patients. We reveal a comprehensive repertoire of thousands of proteins identified in each dataset and compare the unique proteomic profiles as well as functional connections modulated by KSR1 after doxorubicin (Doxo-KSR1) or etoposide (Etop-KSR1) stimulus. From the up-regulated top hits, several proteins, including STAT1, ISG15 and TAP1 are also found to be positively associated with KSR1 expression in patient samples. Moreover, high KSR1 expression, as well as high abundance of these proteins, is correlated with better survival in breast cancer patients who underwent chemotherapy. In aggregate, our data exemplify a broad functional network conferred by KSR1 with genotoxic agents and highlight its implication in predicting chemotherapy response in breast cancer

    Controlling Hydrogen Activation, Spillover, and Desorption with Pd-Au Single-Atom Alloys

    Get PDF
    Key descriptors in hydrogenation catalysis are the nature of the active sites for H2 activation and the adsorption strength of H atoms to the surface. Using atomically resolved model systems of dilute Pd-Au surface alloys and density functional theory calculations, we determine key aspects of H2 activation, diffusion, and desorption. Pd monomers in a Au(111) surface catalyze the dissociative adsorption of H2 at temperatures as low as 85 K, a process previously expected to require contiguous Pd sites. H atoms preside at the Pd sites and desorb at temperatures significantly lower than those from pure Pd (175 versus 310 K). This facile H2 activation and weak adsorption of H atom intermediates are key requirements for active and selective hydrogenations. We also demonstrate weak adsorption of CO, a common catalyst poison, which is sufficient to force H atoms to spill over from Pd to Au sites, as evidenced by low-temperature H2 desorption

    Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves

    Full text link
    Kepler provides light curves of 156,000 stars with unprecedented precision. However, the raw data as they come from the spacecraft contain significant systematic and stochastic errors. These errors, which include discontinuities, systematic trends, and outliers, obscure the astrophysical signals in the light curves. To correct these errors is the task of the Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline. The original version of PDC in Kepler did not meet the extremely high performance requirements for the detection of miniscule planet transits or highly accurate analysis of stellar activity and rotation. One particular deficiency was that astrophysical features were often removed as a side-effect to removal of errors. In this paper we introduce the completely new and significantly improved version of PDC which was implemented in Kepler SOC 8.0. This new PDC version, which utilizes a Bayesian approach for removal of systematics, reliably corrects errors in the light curves while at the same time preserving planet transits and other astrophysically interesting signals. We describe the architecture and the algorithms of this new PDC module, show typical errors encountered in Kepler data, and illustrate the corrections using real light curve examples.Comment: Submitted to PASP. Also see companion paper "Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction" by Jeff C. Smith et a

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    Testing the performance of a blind burst statistic

    Full text link
    In this work we estimate the performance of a method for the detection of burst events in the data produced by interferometric gravitational wave detectors. We compute the receiver operating characteristics in the specific case of a simulated noise having the spectral density expected for Virgo, using test signals taken from a library of possible waveforms emitted during the collapse of the core of Type II Supernovae.Comment: 8 pages, 6 figures, Talk given at the GWDAW2002 worksho

    Designing organometallic compounds for catalysis and therapy

    Get PDF
    Bioorganometallic chemistry is a rapidly developing area of research. In recent years organometallic compounds have provided a rich platform for the design of effective catalysts, e.g. for olefin metathesis and transfer hydrogenation. Electronic and steric effects are used to control both the thermodynamics and kinetics of ligand substitution and redox reactions of metal ions, especially Ru II. Can similar features be incorporated into the design of targeted organometallic drugs? Such complexes offer potential for novel mechanisms of drug action through incorporation of outer-sphere recognition of targets and controlled activation features based on ligand substitution as well as metal- and ligand-based redox processes. We focus here on η 6-arene, η 5-cyclopentadienyl sandwich and half-sandwich complexes of Fe II, Ru II, Os II and Ir III with promising activity towards cancer, malaria, and other conditions. © 2012 The Royal Society of Chemistry
    corecore